1932

Abstract

Bacteria orchestrate collective behaviors and accomplish feats that would be unsuccessful if carried out by a lone bacterium. Processes undertaken by groups of bacteria include bioluminescence, biofilm formation, virulence factor production, and release of public goods that are shared by the community. Collective behaviors are controlled by signal transduction networks that integrate sensory information and transduce the information internally. Here, we discuss network features and mechanisms that, even in the face of dramatically changing environments, drive precise execution of bacterial group behaviors. We focus on representative quorum-sensing and second-messenger cyclic dimeric GMP (c-di-GMP) signal relays. We highlight ligand specificity versus sensitivity, how small-molecule ligands drive discrimination of kin versus nonkin, signal integration mechanisms, single-input sensory systems versus coincidence detectors, and tuning of input-output dynamics via feedback regulation. We summarize how different features of signal transduction systems allow groups of bacteria to successfully interpret and collectively react to dynamically changing environments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-042922-122020
2022-09-08
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/76/1/annurev-micro-042922-122020.html?itemId=/content/journals/10.1146/annurev-micro-042922-122020&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Azimi S, Klementiev AD, Whiteley M, Diggle SP. 2020. Bacterial quorum sensing during infection. Annu. Rev. Microbiol. 74:201–19
    [Google Scholar]
  2. 2.
    Batchelor E, Goulian M. 2003. Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. PNAS 100:2691–96
    [Google Scholar]
  3. 3.
    Becskei A, Serrano L. 2000. Engineering stability in gene networks by autoregulation. Nature 405:6786590–93
    [Google Scholar]
  4. 4.
    Bhatt VS 2019. Quorum sensing mechanisms in Gram positive bacteria. Implication of Quorum Sensing Systems in Biofilm Formation and Virulence PV Bramhachari 297–311 Singapore: Springer
    [Google Scholar]
  5. 5.
    Bomchil N, Watnick P, Kolter R. 2003. Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J. Bacteriol. 185:41384–90
    [Google Scholar]
  6. 6.
    Bottomley MJ, Muraglia E, Bazzo R, Carfì A. 2007. Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J. Biol. Chem. 282:1813592–600
    [Google Scholar]
  7. 7.
    Boyd CD, Chatterjee D, Sondermann H, O'Toole GA. 2012. LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0–1, is a calcium-dependent protease. J. Bacteriol. 194:164406–14
    [Google Scholar]
  8. 8.
    Brandman O, Meyer T. 2008. Feedback loops shape cellular signals in space and time. Science 322:5900390–95
    [Google Scholar]
  9. 9.
    Bridges AA, Bassler BL. 2019. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLOS Biol 17:11e3000429
    [Google Scholar]
  10. 10.
    Bridges AA, Bassler BL. 2021. Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals. eLife 10:e65487
    [Google Scholar]
  11. 11.
    Bridges AA, Prentice JA, Fei C, Wingreen NS, Bassler BL. 2022. Quantitative input-output dynamics of a c-di-GMP signal transduction cascade in Vibrio cholerae. PLOS Biol 20:3e3001585
    [Google Scholar]
  12. 12.
    Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I et al. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:6871545–49
    [Google Scholar]
  13. 13.
    Christen B, Christen M, Paul R, Schmid F, Folcher M et al. 2006. Allosteric control of cyclic di-GMP signaling. J. Biol. Chem. 281:4232015–24
    [Google Scholar]
  14. 14.
    Dahlstrom KM, Giglio KM, Collins AJ, Sondermann H, O'Toole GA. 2015. Contribution of physical interactions to signaling specificity between a diguanylate cyclase and its effector. mBio 6:6e01978–15
    [Google Scholar]
  15. 15.
    Duddy OP, Bassler BL. 2021. Quorum sensing across bacterial and viral domains. PLOS Pathog 17:1e1009074
    [Google Scholar]
  16. 16.
    Eberhard A, Burlingame AL, Eberhard C, Kenyon GL, Nealson KH, Oppenheimer NJ 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:92444–49
    [Google Scholar]
  17. 17.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002. Stochastic gene expression in a single cell. Science 297:55841183–86
    [Google Scholar]
  18. 18.
    Engebrecht J, Silverman M. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. PNAS 81:134154–58
    [Google Scholar]
  19. 19.
    Feng L, Rutherford ST, Papenfort K, Bagert JD, van Kessel JC et al. 2015. A qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160:1–2228–40
    [Google Scholar]
  20. 20.
    Fisher SL, Kim S-K, Wanner BL, Walsh CT. 1996. Kinetic comparison of the specificity of the vancomycin resistance kinase VanS for two response regulators, VanR and PhoB. Biochemistry 35:154732–40
    [Google Scholar]
  21. 21.
    Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14:9563–75
    [Google Scholar]
  22. 22.
    Freeman JA, Bassler BL. 1999. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J. Bacteriol. 181:3899–906
    [Google Scholar]
  23. 23.
    Freeman JA, Bassler BL. 1999. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol. Microbiol. 31:2665–77
    [Google Scholar]
  24. 24.
    Freeman JA, Lilley BN, Bassler BL. 2000. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol. Microbiol. 35:1139–49
    [Google Scholar]
  25. 25.
    Gerdt JP, Wittenwyler DM, Combs JB, Boursier ME, Brummond JW et al. 2017. Chemical interrogation of LuxR-type quorum sensing receptors reveals new insights into receptor selectivity and the potential for interspecies bacterial signaling. ACS Chem. Biol. 12:92457–64
    [Google Scholar]
  26. 26.
    Grimshaw CE, Huang S, Hanstein CG, Strauch MA, Burbulys D et al. 1998. Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37:51365–75
    [Google Scholar]
  27. 27.
    Ha D-G, O'Toole GA. 2015. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas Aeruginosa review. Microbiol. Spectr. 3:2MB–0003-2014
    [Google Scholar]
  28. 28.
    Hawver LA, Jung SA, Ng W-L. 2016. Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol. Rev. 40:5738–52
    [Google Scholar]
  29. 29.
    Haycocks JRJ, Warren GZL, Walker LM, Chlebek JL, Dalia TN et al. 2019. The quorum sensing transcription factor AphA directly regulates natural competence in Vibrio cholerae. PLOS Genet 15:10e1008362
    [Google Scholar]
  30. 30.
    Hengge R. 2021. High-specificity local and global c-di-GMP signaling. Trends Microbiol 29:11993–1003
    [Google Scholar]
  31. 31.
    Hengge R, Häussler S, Pruteanu M, Stülke J, Tschowri N, Turgay K. 2019. Recent advances and current trends in nucleotide second messenger signaling in bacteria. J. Mol. Biol. 431:5908–27
    [Google Scholar]
  32. 32.
    Henke JM, Bassler BL. 2004. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186:206902–14
    [Google Scholar]
  33. 33.
    Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL. 2007. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:7171883–86
    [Google Scholar]
  34. 34.
    Hinsa SM, Espinosa-Urgel M, Ramos JL, O'Toole GA. 2003. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol. Microbiol. 49:4905–18
    [Google Scholar]
  35. 35.
    Hossain S, Heckler I, Boon EM. 2018. Discovery of a nitric oxide responsive quorum sensing circuit in Vibrio cholerae. ACS Chem. Biol. 13:81964–69
    [Google Scholar]
  36. 36.
    Høyland-Kroghsbo NM, Paczkowski J, Mukherjee S, Broniewski J, Westra E et al. 2017. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system. PNAS 114:1131–35
    [Google Scholar]
  37. 37.
    Hudaiberdiev S, Choudhary KS, Vera Alvarez R, Gelencsér Z, Ligeti B et al. 2015. Census of solo LuxR genes in prokaryotic genomes. Front. Cell Infect. Microbiol. 5:20
    [Google Scholar]
  38. 38.
    Hurley A, Bassler BL. 2017. Asymmetric regulation of quorum-sensing receptors drives autoinducer-specific gene expression programs in Vibrio cholerae. PLOS Genet 13:5e1006826
    [Google Scholar]
  39. 39.
    Ismail AS, Valastyan JS, Bassler BL. 2016. A host-produced autoinducer-2 mimic activates bacterial quorum sensing. Cell Host Microbe 19:4470–80
    [Google Scholar]
  40. 40.
    Jacob-Dubuisson F, Mechaly A, Betton J-M, Antoine R 2018. Structural insights into the signalling mechanisms of two-component systems. Nat. Rev. Microbiol. 16:10585–93
    [Google Scholar]
  41. 41.
    Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15:5271–84
    [Google Scholar]
  42. 42.
    Joris PX, Smith PH, Yin TC. 1998. Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21:61235–38
    [Google Scholar]
  43. 43.
    Jung SA, Chapman CA, Ng W-L. 2015. Quadruple quorum-sensing inputs control Vibrio cholerae virulence and maintain system robustness. PLOS Pathog 11:4e1004837
    [Google Scholar]
  44. 44.
    Karatan E, Michael AJ. 2013. A wider role for polyamines in biofilm formation. Biotechnol. Lett. 35:111715–17
    [Google Scholar]
  45. 45.
    Ke X, Miller LC, Bassler BL. 2015. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor. Mol. Microbiol. 95:1127–42
    [Google Scholar]
  46. 46.
    Koskella B, Brockhurst MA. 2014. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 38:5916–31
    [Google Scholar]
  47. 47.
    Laub MT, Goulian M. 2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41:121–45
    [Google Scholar]
  48. 48.
    Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:169–82
    [Google Scholar]
  49. 49.
    Lin W, Kovacikova G, Skorupski K. 2005. Requirements for Vibrio cholerae HapR binding and transcriptional repression at the hapR promoter are distinct from those at the aphA promoter. J. Bacteriol. 187:93013–19
    [Google Scholar]
  50. 50.
    Lin W, Kovacikova G, Skorupski K. 2007. The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in Vibrio cholerae by antagonizing Lrp- and VpsR-mediated activation. Mol. Microbiol. 64:4953–67
    [Google Scholar]
  51. 51.
    McCready AR, Paczkowski JE, Henke BR, Bassler BL. 2019. Structural determinants driving homoserine lactone ligand selection in the Pseudomonas aeruginosa LasR quorum-sensing receptor. PNAS 116:1245–54
    [Google Scholar]
  52. 52.
    Michael B, Smith JN, Swift S, Heffron F, Ahmer BMM. 2001. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J. Bacteriol. 183:195733–42
    [Google Scholar]
  53. 53.
    Miller SD, Haddock SHD, Elvidge CD, Lee TF. 2005. Detection of a bioluminescent milky sea from space. PNAS 102:4014181–84
    [Google Scholar]
  54. 54.
    Mok KC, Wingreen NS, Bassler BL. 2003. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J 22:4870–81
    [Google Scholar]
  55. 55.
    Monds RD, Newell PD, Gross RH, O'Toole GA. 2007. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0–1 biofilm formation by controlling secretion of the adhesin LapA. Mol. Microbiol. 63:3656–79
    [Google Scholar]
  56. 56.
    Mukherjee S, Bassler BL. 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17:6371–82
    [Google Scholar]
  57. 57.
    Neiditch MB, Federle MJ, Miller ST, Bassler BL, Hughson FM. 2005. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol. Cell 18:5507–18
    [Google Scholar]
  58. 58.
    Neiditch MB, Federle MJ, Pompeani AJ, Kelly RC, Swem DL et al. 2006. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126:61095–108
    [Google Scholar]
  59. 59.
    Newell PD, Boyd CD, Sondermann H, O'Toole GA. 2011. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLOS Biol 9:2e1000587
    [Google Scholar]
  60. 60.
    Newell PD, Monds RD, O'Toole GA. 2009. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1. PNAS 106:93461–66
    [Google Scholar]
  61. 61.
    Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14:9576–88
    [Google Scholar]
  62. 62.
    Papenfort K, Silpe JE, Schramma KR, Cong J-P, Seyedsayamdost MR, Bassler BL. 2017. A Vibrio cholerae autoinducer-receptor pair that controls biofilm formation. Nat. Chem. Biol. 13:5551–57
    [Google Scholar]
  63. 63.
    Park J, Dies M, Lin Y, Hormoz S, Smith-Unna SE et al. 2018. Molecular time sharing through dynamic pulsing in single cells. Cell Syst 6:2216–29.e15
    [Google Scholar]
  64. 64.
    Patel HK, Suárez-Moreno ZR, Degrassi G, Subramoni S, González JF, Venturi V. 2013. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. Front. Plant Sci. 4:447
    [Google Scholar]
  65. 65.
    Pultz IS, Christen M, Kulasekara HD, Kennard A, Kulasekara B, Miller SI 2012. The response threshold of Salmonella PilZ domain proteins is determined by their binding affinities for c-di-GMP. Mol. Microbiol. 86:61424–40
    [Google Scholar]
  66. 66.
    Rahbari KM, Chang JC, Federle MJ. 2021. A Streptococcus quorum sensing system enables suppression of innate immunity. mBio 12:3e03400–20
    [Google Scholar]
  67. 67.
    Rajput A, Kumar M. 2017. In silico analyses of conservational, functional and phylogenetic distribution of the LuxI and LuxR homologs in Gram-positive bacteria. Sci. Rep. 7:6969
    [Google Scholar]
  68. 68.
    Roilides E, Simitsopoulou M, Katragkou A, Walsh TJ. 2015. How biofilms evade host defenses. Microbiol. Spectr. 3:3 https://doi.org/10.1128/microbiolspec.MB-0012-2014
    [Crossref] [Google Scholar]
  69. 69.
    Römling U, Galperin MY, Gomelsky M. 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77:11–52
    [Google Scholar]
  70. 70.
    Roome CJ, Kuhn B. 2020. Dendritic coincidence detection in Purkinje neurons of awake mice. eLife 9:e59619
    [Google Scholar]
  71. 71.
    Rowland MA, Deeds EJ. 2014. Crosstalk and the evolution of specificity in two-component signaling. PNAS 111:155550–55
    [Google Scholar]
  72. 72.
    Rutherford ST, van Kessel JC, Shao Y, Bassler BL. 2011. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev 25:4397–408
    [Google Scholar]
  73. 73.
    Schauder S, Shokat K, Surette MG, Bassler BL. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:2463–76
    [Google Scholar]
  74. 74.
    Shah M, Taylor VL, Bona D, Tsao Y, Stanley SY et al. 2021. A phage-encoded anti-activator inhibits quorum sensing in Pseudomonas aeruginosa. Mol. Cell 81:3571–83.e6
    [Google Scholar]
  75. 75.
    Shikuma NJ, Fong JCN, Odell LS, Perchuk BS, Laub MT, Yildiz FH. 2009. Overexpression of VpsS, a hybrid sensor kinase, enhances biofilm formation in Vibrio cholerae. J. Bacteriol. 191:165147–58
    [Google Scholar]
  76. 76.
    Silpe JE, Bassler BL. 2019. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176:1–2268–80.e13
    [Google Scholar]
  77. 77.
    Silpe JE, Bassler BL. 2019. Phage-encoded LuxR-type receptors responsive to host-produced bacterial quorum-sensing autoinducers. mBio 10:2e00638–19
    [Google Scholar]
  78. 78.
    Silpe JE, Bridges AA, Huang X, Coronado DR, Duddy OP, Bassler BL. 2020. Separating functions of the phage-encoded quorum-sensing-activated antirepressor Qtip. Cell Host Microbe 27:4629–41.e4
    [Google Scholar]
  79. 79.
    Sobe RC, Bond WG, Wotanis CK, Zayner JP, Burriss MA et al. 2017. Spermine inhibits Vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system. J. Biol. Chem. 292:4117025–36
    [Google Scholar]
  80. 80.
    Srivastava D, Harris RC, Waters CM. 2011. Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J. Bacteriol. 193:226331–41
    [Google Scholar]
  81. 81.
    Srivastava SK, Rajasree K, Fasim A, Arakere G, Gopal B. 2014. Influence of the AgrC-AgrA complex on the response time of Staphylococcus aureus quorum sensing. J. Bacteriol. 196:152876–88
    [Google Scholar]
  82. 82.
    Stevens AM, Fujita N, Ishihama A, Greenberg EP. 1999. Involvement of the RNA polymerase alpha-subunit C-terminal domain in LuxR-dependent activation of the Vibrio fischeri luminescence genes. J. Bacteriol. 181:154704–7
    [Google Scholar]
  83. 83.
    Subramoni S, Florez Salcedo DV, Suarez-Moreno ZR 2015. A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria. Front. Cell. Infect. Microbiol. 5:16
    [Google Scholar]
  84. 84.
    Svenningsen SL, Waters CM, Bassler BL. 2008. A negative feedback loop involving small RNAs accelerates Vibrio cholerae’s transition out of quorum-sensing mode. Genes Dev 22:2226–38
    [Google Scholar]
  85. 85.
    Swem LR, Swem DL, Wingreen NS, Bassler BL. 2008. Deducing receptor signaling parameters from in vivo analysis: LuxN/AI-1 quorum sensing in Vibrio harveyi. Cell 134:3461–73
    [Google Scholar]
  86. 86.
    Teng S-W, Schaffer JN, Tu KC, Mehta P, Lu W et al. 2011. Active regulation of receptor ratios controls integration of quorum-sensing signals in Vibrio harveyi. Mol. Syst. Biol. 7:491
    [Google Scholar]
  87. 87.
    Tsai C-S, Winans SC. 2010. LuxR-type quorum-sensing regulators that are detached from common scents. Mol. Microbiol. 77:51072–82
    [Google Scholar]
  88. 88.
    Tu KC, Long T, Svenningsen SL, Wingreen NS, Bassler BL. 2010. Negative feedback loops involving small regulatory RNAs precisely control the Vibrio harveyi quorum-sensing response. Mol. Cell 37:4567–79
    [Google Scholar]
  89. 89.
    Valastyan JS, Kraml CM, Pelczer I, Ferrante T, Bassler BL. 2021. Saccharomyces cerevisiae requires CFF1 to produce 4-hydroxy-5-methylfuran-3(2H)-one, a mimic of the bacterial quorum-sensing autoinducer AI-2. mBio 12:2e03303–20
    [Google Scholar]
  90. 90.
    Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R et al. 2002. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:174393–401
    [Google Scholar]
  91. 91.
    Venturi V, Ahmer BMM. 2015. Editorial: LuxR solos are becoming major players in cell-cell communication in bacteria. Front. Cell. Infect. Microbiol. 5:89
    [Google Scholar]
  92. 92.
    Wang B, Zhao A, Novick RP, Muir TW. 2014. Activation and inhibition of the receptor histidine kinase AgrC occurs through opposite helical transduction motions. Mol. Cell 53:6929–40
    [Google Scholar]
  93. 93.
    Watve S, Barrasso K, Jung SA, Davis KJ, Hawver LA et al. 2020. Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host. PLOS Pathog 16:2e1008313
    [Google Scholar]
  94. 94.
    Wellington S, Greenberg EP 2019. Quorum sensing signal selectivity and the potential for interspecies cross talk. mBio 10:2e00146–19
    [Google Scholar]
  95. 95.
    Wu L, Luo Y. 2021. Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. Front. Microbiol. 12:101
    [Google Scholar]
  96. 96.
    Young EC, Baumgartner JT, Karatan E, Kuhn ML. 2021. A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation. Microbiology 167:3001023
    [Google Scholar]
  97. 97.
    Zhang L, Li S, Liu X, Wang Z, Jiang M et al. 2020. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nat. Commun. 11:15371
    [Google Scholar]
  98. 98.
    Zhang R, Pappas KM, Pappas T, Brace JL, Miller PC et al. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:6892971–74
    [Google Scholar]
  99. 99.
    Zschiedrich CP, Keidel V, Szurmant H. 2016. Molecular mechanisms of two-component signal transduction. J. Mol. Biol. 428:193752–75
    [Google Scholar]
/content/journals/10.1146/annurev-micro-042922-122020
Loading
/content/journals/10.1146/annurev-micro-042922-122020
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error