1932

Abstract

There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-101121-084508
2023-06-08
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/14/1/annurev-chembioeng-101121-084508.html?itemId=/content/journals/10.1146/annurev-chembioeng-101121-084508&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Setliff I, Shiakolas AR, Pilewski KA, Murji AA, Mapengo RE et al. 2019. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179:1636–46.e15
    [Google Scholar]
  2. 2.
    Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. 2023. Antibodies to watch in 2023. mAbs 15:2153410
    [Google Scholar]
  3. 3.
    Pedrioli A, Oxenius A. 2021. Single B cell technologies for monoclonal antibody discovery. Trends Immunol. 42:1143–58
    [Google Scholar]
  4. 4.
    Ngwuta JO, Chen M, Modjarrad K, Joyce MG, Kanekiyo M et al. 2015. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci. Transl. Med. 7:309ra162
    [Google Scholar]
  5. 5.
    McLellan JS, Chen M, Leung S, Graepel KW, Du X et al. 2013. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340:1113–17
    [Google Scholar]
  6. 6.
    Zhu Q, McLellan JS, Kallewaard NL, Ulbrandt ND, Palaszynski S et al. 2017. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci. Transl. Med. 9:eaaj1928
    [Google Scholar]
  7. 7.
    Bergeron HC, Tripp RA. 2022. Breakthrough therapy designation of nirsevimab for the prevention of lower respiratory tract illness caused by respiratory syncytial virus infections (RSV). Expert Opin. Investig. Drugs 31:23–29
    [Google Scholar]
  8. 8.
    Cao Y, Wang J, Jian F, Xiao T, Song W et al. 2022. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602:657–63
    [Google Scholar]
  9. 9.
    VanBlargan LA, Errico JM, Halfmann PJ, Zost SJ, Crowe JE Jr. et al. 2022. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. 28:490–95
    [Google Scholar]
  10. 10.
    Jette CA, Cohen AA, Gnanapragasam PNP, Muecksch F, Lee YE et al. 2021. Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Rep. 36:109760
    [Google Scholar]
  11. 11.
    Starr TN, Czudnochowski N, Liu Z, Zatta F, Park YJ et al. 2021. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 597:97–102
    [Google Scholar]
  12. 12.
    Xiang Y, Huang W, Liu H, Sang Z, Nambulli S et al. 2022. Superimmunity by pan-sarbecovirus nanobodies. Cell Rep. 39:111004
    [Google Scholar]
  13. 13.
    Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z et al. 2020. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 370:1479–84
    [Google Scholar]
  14. 14.
    Cohen AA, van Doremalen N, Greaney AJ, Andersen H, Sharma A et al. 2022. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 377:eabq0839
    [Google Scholar]
  15. 15.
    Fan C, Cohen AA, Park M, Hung AF-H, Keeffe JR et al. 2022. Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes. Immunity 55:2419–35.e10
    [Google Scholar]
  16. 16.
    Ng S, Nachbagauer R, Balmaseda A, Stadlbauer D, Ojeda S et al. 2019. Novel correlates of protection against pandemic H1N1 influenza A virus infection. Nat. Med. 25:962–67
    [Google Scholar]
  17. 17.
    Doud MB, Lee JM, Bloom JD. 2018. How single mutations affect viral escape from broad and narrow antibodies to H1 influenza hemagglutinin. Nat. Commun. 9:1386
    [Google Scholar]
  18. 18.
    DiLillo DJ, Tan GS, Palese P, Ravetch JV. 2014. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat. Med. 20:143–51
    [Google Scholar]
  19. 19.
    Guthmiller JJ, Han J, Utset HA, Li L, Lan LY et al. 2022. Broadly neutralizing antibodies target a haemagglutinin anchor epitope. Nature 602:314–20
    [Google Scholar]
  20. 20.
    Huang Y, Nguyen AW, Hsieh C-L, Silva R, Olaluwoye OS et al. 2021. Identification of a conserved neutralizing epitope present on spike proteins from all highly pathogenic coronaviruses. bioRxiv 428824 . https://doi.org/10.1101/2021.01.31.428824
    [Crossref]
  21. 21.
    Hong J, Kwon HJ, Cachau R, Chen CZ, Butay KJ et al. 2021. Camel nanobodies broadly neutralize SARS-CoV-2 variants. PNAS 119:e2201433119
    [Google Scholar]
  22. 22.
    Biagini M, Spinsanti M, De Angelis G, Tomei S, Ferlenghi I et al. 2016. Expression of factor H binding protein in meningococcal strains can vary at least 15-fold and is genetically determined. PNAS 113:2714–19
    [Google Scholar]
  23. 23.
    Martin SW, Pawloski L, Williams M, Weening K, DeBolt C et al. 2015. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin. Infect. Dis. 60:223–27
    [Google Scholar]
  24. 24.
    Huang J, Gingerich AD, Royer F, Paschall AV, Pena-Briseno A et al. 2021. Broadly reactive human monoclonal antibodies targeting the pneumococcal histidine triad protein protect against fatal pneumococcal infection. Infect. Immun. 89:e00747-20
    [Google Scholar]
  25. 25.
    Gingerich AD, Royer F, McCormick AL, Scasny A, Vidal JE, Mousa JJ. 2023. Synergistic protection against secondary pneumococcal infection by human monoclonal antibodies targeting distinct epitopes. J. Immunol. 210:50–60
    [Google Scholar]
  26. 26.
    Li L, Di L, Akther S, Zeglis BM, Qiu W. 2022. Evolution of the vls antigenic variability locus of the Lyme disease pathogen and development of recombinant monoclonal antibodies targeting conserved VlsE epitopes. Microbiol. Spectr. 10:e0174322
    [Google Scholar]
  27. 27.
    Hsieh CL, Werner AP, Leist SR, Stevens LJ, Falconer E et al. 2021. Stabilized coronavirus spike stem elicits a broadly protective antibody. Cell Rep. 37:109929
    [Google Scholar]
  28. 28.
    Schrader JW, McLean GR. 2007. Location, location, timing: analysis of cytomegalovirus epitopes for neutralizing antibodies. Immunol. Lett. 112:58–60
    [Google Scholar]
  29. 29.
    Kim JH, Excler JL, Michael NL. 2015. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu. Rev. Med. 66:423–37
    [Google Scholar]
  30. 30.
    Doria-Rose NA, Schramm CA, Gorman J, Moore PL, Bhiman JN et al. 2014. Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature 509:55–62
    [Google Scholar]
  31. 31.
    Richardson SI, Lambson BE, Crowley AR, Bashirova A, Scheepers C et al. 2019. IgG3 enhances neutralization potency and Fc effector function of an HIV V2-specific broadly neutralizing antibody. PLOS Pathog. 15:e1008064
    [Google Scholar]
  32. 32.
    Hessell AJ, Powell R, Jiang X, Luo C, Weiss S et al. 2019. Multimeric epitope-scaffold HIV vaccines target V1V2 and differentially tune polyfunctional antibody responses. Cell Rep. 28:877–95.e6
    [Google Scholar]
  33. 33.
    Yuan M, Wu NC, Zhu X, Lee CD, So RTY et al. 2020. A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Science 368:630–33
    [Google Scholar]
  34. 34.
    Bournazos S, Klein F, Pietzsch J, Seaman MS, Nussenzweig MC, Ravetch JV. 2014. Broadly neutralizing anti-HIV-1 antibodies require Fc effector functions for in vivo activity. Cell 158:1243–53
    [Google Scholar]
  35. 35.
    Veillette M, Coutu M, Richard J, Batraville L-A, Dagher O et al. 2015. The HIV-1 gp120 CD4-bound conformation is preferentially targeted by antibody-dependent cellular cytotoxicity-mediating antibodies in sera from HIV-1-infected individuals. J. Virol. 89:545–51
    [Google Scholar]
  36. 36.
    Madani N, Princiotto AM, Mach L, Ding S, Prevost J et al. 2018. A CD4-mimetic compound enhances vaccine efficacy against stringent immunodeficiency virus challenge. Nat. Commun. 9:2363
    [Google Scholar]
  37. 37.
    Kwong PD, Wilson IA. 2009. HIV-1 and influenza antibodies: seeing antigens in new ways. Nat. Immunol. 10:573–78
    [Google Scholar]
  38. 38.
    Pinto D, Fenwick C, Caillat C, Silacci C, Guseva S et al. 2019. Structural basis for broad HIV-1 neutralization by the MPER-specific human broadly neutralizing antibody LN01. Cell Host Microbe 26:623–37.e8
    [Google Scholar]
  39. 39.
    Krebs SJ, Kwon YD, Schramm CA, Law WH, Donofrio G et al. 2019. Longitudinal analysis reveals early development of three MPER-directed neutralizing antibody lineages from an HIV-1-infected individual. Immunity 50:677–91.e13
    [Google Scholar]
  40. 40.
    Poulsen BE, Yang R, Clatworthy AE, White T, Osmulski SJ et al. 2019. Defining the core essential genome of Pseudomonas aeruginosa. PNAS 116:10072–80
    [Google Scholar]
  41. 41.
    Fisher MW, Devlin HB, Gnabasik FJ. 1969. New immunotype schema for Pseudomonas aeruginosa based on protective antigens. J. Bacteriol. 98:835–36
    [Google Scholar]
  42. 42.
    Knirel YA. 1990. Polysaccharide antigens of Pseudomonas aeruginosa. Crit. Rev. Microbiol. 17:273–304
    [Google Scholar]
  43. 43.
    Horn MP, Zuercher AW, Imboden MA, Rudolf MP, Lazar H et al. 2010. Preclinical in vitro and in vivo characterization of the fully human monoclonal IgM antibody KBPA101 specific for Pseudomonas aeruginosa serotype IATS-O11. Antimicrob. Agents Chemother. 54:2338–44
    [Google Scholar]
  44. 44.
    Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, Deoliveira RB et al. 2013. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. PNAS 110:E2209–18
    [Google Scholar]
  45. 45.
    Henriques P, Dello Iacono L, Gimeno A, Biolchi A, Romano MR et al. 2020. Structure of a protective epitope reveals the importance of acetylation of Neisseria meningitidis serogroup A capsular polysaccharide. PNAS 117:29795–802
    [Google Scholar]
  46. 46.
    Soliman C, Walduck AK, Yuriev E, Richards JS, Cywes-Bentley C et al. 2018. Structural basis for antibody targeting of the broadly expressed microbial polysaccharide poly-N-acetylglucosamine. J. Biol. Chem. 293:5079–89
    [Google Scholar]
  47. 47.
    Fong R, Kajihara K, Chen M, Hotzel I, Mariathasan S et al. 2018. Structural investigation of human S. aureus-targeting antibodies that bind wall teichoic acid. MAbs 10:979–91
    [Google Scholar]
  48. 48.
    Ozdilek A, Huang J, Babb R, Paschall AV, Middleton DR et al. 2021. A structural model for the ligand binding of pneumococcal serotype 3 capsular polysaccharide-specific protective antibodies. mBio 12:e0080021
    [Google Scholar]
  49. 49.
    Storek KM, Auerbach MR, Shi H, Garcia NK, Sun D et al. 2018. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. PNAS 115:3692–97
    [Google Scholar]
  50. 50.
    Storek KM, Chan J, Vij R, Chiang N, Lin Z et al. 2019. Massive antibody discovery used to probe structure-function relationships of the essential outer membrane protein LptD. eLife 8:e46258
    [Google Scholar]
  51. 51.
    DiGiandomenico A, Warrener P, Hamilton M, Guillard S, Ravn P et al. 2012. Identification of broadly protective human antibodies to Pseudomonas aeruginosa exopolysaccharide Psl by phenotypic screening. J. Exp. Med. 209:1273–87
    [Google Scholar]
  52. 52.
    Ali SO, Yu XQ, Robbie GJ, Wu Y, Shoemaker K et al. 2019. Phase 1 study of MEDI3902, an investigational anti-Pseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin. Microbiol. Infect. 25:629.e1–29.e6
    [Google Scholar]
  53. 53.
    Verkhivker GM, Agajanian S, Oztas DY, Gupta G. 2021. Atomistic simulations and in silico mutational profiling of protein stability and binding in the SARS-CoV-2 spike protein complexes with nanobodies: molecular determinants of mutational escape mechanisms. ACS Omega 6:26354–71
    [Google Scholar]
  54. 54.
    Bashor L, Gagne RB, Bosco-Lauth AM, Bowen RA, Stenglein M, VandeWoude S. 2021. SARS-CoV-2 evolution in animals suggests mechanisms for rapid variant selection. PNAS 118:e2105253118
    [Google Scholar]
  55. 55.
    Meijers M, Vanshylla K, Gruell H, Klein F, Lässig M. 2021. Predicting in vivo escape dynamics of HIV-1 from a broadly neutralizing antibody. PNAS 118:e2104651118
    [Google Scholar]
  56. 56.
    Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC et al. 2021. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371:850–54
    [Google Scholar]
  57. 57.
    Lee JM, Huddleston J, Doud MB, Hooper KA, Wu NC et al. 2018. Deep mutational scanning of hemagglutinin helps predict evolutionary fates of human H3N2 influenza variants. PNAS 115:E8276–E85
    [Google Scholar]
  58. 58.
    Watson A, Li H, Ma B, Weiss R, Bendayan D et al. 2021. Human antibodies targeting a Mycobacterium transporter protein mediate protection against tuberculosis. Nat. Commun. 12:602
    [Google Scholar]
  59. 59.
    Gonzales SJ, Clarke KN, Batugedara G, Garza R, Braddom AE et al. 2022. A molecular analysis of memory B cell and antibody responses against Plasmodium falciparum merozoite surface protein 1 in children and adults from Uganda. Front. Immunol. 13:809264
    [Google Scholar]
  60. 60.
    Delidakis G, Kim JE, George K, Georgiou G 2022. Improving antibody therapeutics by manipulating the Fc domain: immunological and structural considerations. Annu. Rev. Biomed. Eng. 24:249–74
    [Google Scholar]
  61. 61.
    Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. 2020. Antibody-dependent enhancement: a challenge for developing a safe dengue vaccine. Front. Cell. Infect. Microbiol. 10:572681
    [Google Scholar]
  62. 62.
    Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S et al. 2017. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science 355:395–98
    [Google Scholar]
  63. 63.
    Parke JA, Avis PJ. 1964. The effect of digestion with papain and pepsin upon the antitoxic activity of rabbit antibody. Immunology 7:248–60
    [Google Scholar]
  64. 64.
    Gearing AJ, Thorpe SJ, Miller K, Mangan M, Varley PG et al. 2002. Selective cleavage of human IgG by the matrix metalloproteinases, matrilysin and stromelysin. Immunol. Lett. 81:41–48
    [Google Scholar]
  65. 65.
    Collin M, Olsen A 2001. Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect. Immun. 69:7187–89
    [Google Scholar]
  66. 66.
    von Pawel-Rammingen U, Johansson BP, Björck L. 2002. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J. 21:1607–15
    [Google Scholar]
  67. 67.
    Ryan MH, Petrone D, Nemeth JF, Barnathan E, Björck L, Jordan RE. 2008. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol. Immunol. 45:1837–46
    [Google Scholar]
  68. 68.
    Fick RB Jr., Baltimore RS, Squier SU, Reynolds HY. 1985. IgG proteolytic activity of Pseudomonas aeruginosa in cystic fibrosis. J. Infect. Dis. 151:589–98
    [Google Scholar]
  69. 69.
    Fernandez Falcon MF, Echague CG, Hair PS, Nyalwidhe JO, Cunnion KM. 2011. Protease inhibitors decrease IgG shedding from Staphylococcus aureus, increasing complement activation and phagocytosis efficiency. J. Med. Microbiol. 60:1415–22
    [Google Scholar]
  70. 70.
    Brezski RJ, Vafa O, Petrone D, Tam SH, Powers G et al. 2009. Tumor-associated and microbial proteases compromise host IgG effector functions by a single cleavage proximal to the hinge. PNAS 106:17864–69
    [Google Scholar]
  71. 71.
    Jordan RE, Fernandez J, Brezski RJ, Greenplate AR, Knight DM et al. 2016. A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity. Immunol. Lett. 172:29–39
    [Google Scholar]
  72. 72.
    Brezski RJ, Luongo JL, Petrone D, Ryan MH, Zhong D et al. 2008. Human anti-IgG1 hinge autoantibodies reconstitute the effector functions of proteolytically inactivated IgGs. J. Immunol. 181:3183–92
    [Google Scholar]
  73. 73.
    Brezski RJ, Jordan RE. 2010. Cleavage of IgGs by proteases associated with invasive diseases: An evasion tactic against host immunity?. MAbs 2:212–20
    [Google Scholar]
  74. 74.
    Brezski RJ, Oberholtzer A, Strake B, Jordan RE. 2011. The in vitro resistance of IgG2 to proteolytic attack concurs with a comparative paucity of autoantibodies against peptide analogs of the IgG2 hinge. MAbs 3:558–67
    [Google Scholar]
  75. 75.
    Vidarsson G, Dekkers G, Rispens T. 2014. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5:520
    [Google Scholar]
  76. 76.
    Duncan AR, Winter G. 1988. The binding site for C1q on IgG. Nature 332:738–40
    [Google Scholar]
  77. 77.
    Kinder M, Greenplate AR, Grugan KD, Soring KL, Heeringa KA et al. 2013. Engineered protease-resistant antibodies with selectable cell-killing functions. J. Biol. Chem. 288:30843–54
    [Google Scholar]
  78. 78.
    Nam DH, Lee KB, Kruchowy E, Pham H, Ge X. 2020. Protease inhibition mechanism of camelid-like synthetic human antibodies. Biochemistry 59:3802–12
    [Google Scholar]
  79. 79.
    Everett MJ, Davies DT. 2021. Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discov. Today 26:2108–23
    [Google Scholar]
  80. 80.
    Leiris S, Davies DT, Sprynski N, Castandet J, Beyria L et al. 2021. Virtual screening approach to identifying a novel and tractable series of Pseudomonas aeruginosa elastase inhibitors. ACS Med. Chem. Lett. 12:217–27
    [Google Scholar]
  81. 81.
    Santajit S, Kong-Ngoen T, Chongsa-Nguan M, Boonyuen U, Pumirat P et al. 2021. Human single-chain antibodies that neutralize elastolytic activity of Pseudomonas aeruginosa LasB. Pathogens 10:765
    [Google Scholar]
  82. 82.
    Wolska K, Szweda P. 2009. Genetic features of clinical Pseudomonas aeruginosa strains. Pol. J. Microbiol. 58:255–60
    [Google Scholar]
  83. 83.
    Smith EJ, Visai L, Kerrigan SW, Speziale P, Foster TJ. 2011. The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus. Infect. Immun. 79:3801–9
    [Google Scholar]
  84. 84.
    Van Loghem E, Frangione B, Recht B, Franklin EC. 1982. Staphylococcal protein A and human IgG subclasses and allotypes. Scand. J. Immunol. 15:275–78
    [Google Scholar]
  85. 85.
    Choe W, Durgannavar TA, Chung SJ. 2016. Fc-binding ligands of immunoglobulin G: an overview of high affinity proteins and peptides. Materials 9:994
    [Google Scholar]
  86. 86.
    Cruz AR, den Boer MA, Strasser J, Zwarthoff SA, Beurskens FJ et al. 2021. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. PNAS 118:e2016772118
    [Google Scholar]
  87. 87.
    Cruz AR, Bentlage AEH, Blonk R, de Haas CJC, Aerts PC et al. 2022. Toward understanding how staphylococcal protein A inhibits IgG-mediated phagocytosis. J. Immunol. 209:1146–55
    [Google Scholar]
  88. 88.
    Roben PW, Salem AN, Silverman GJ. 1995. VH3 family antibodies bind domain D of staphylococcal protein A. J. Immunol. 154:6437–45
    [Google Scholar]
  89. 89.
    Blumberg LJ, Humphries JE, Jones SD, Pearce LB, Holgate R et al. 2019. Blocking FcRn in humans reduces circulating IgG levels and inhibits IgG immune complex-mediated immune responses. Sci. Adv. 5:eaax9586
    [Google Scholar]
  90. 90.
    Boero E, Cruz AR, Pansegrau W, Giovani C, Rooijakkers SHM et al. 2022. Natural human immunity against staphylococcal protein A relies on effector functions triggered by IgG3. Front. Immunol. 13:834711
    [Google Scholar]
  91. 91.
    Varshney AK, Kuzmicheva GA, Lin J, Sunley KM, Bowling RA Jr. et al. 2018. A natural human monoclonal antibody targeting Staphylococcus Protein A protects against Staphylococcus aureus bacteremia. PLOS ONE 13:e0190537
    [Google Scholar]
  92. 92.
    Thammavongsa V, Rauch S, Kim HK, Missiakas DM, Schneewind O. 2015. Protein A-neutralizing monoclonal antibody protects neonatal mice against Staphylococcus aureus. Vaccine 33:523–26
    [Google Scholar]
  93. 93.
    Kim HK, Emolo C, DeDent AC, Falugi F, Missiakas DM, Schneewind O. 2012. Protein A-specific monoclonal antibodies and prevention of Staphylococcus aureus disease in mice. Infect. Immun. 80:3460–70
    [Google Scholar]
  94. 94.
    Shi M, Chen X, Sun Y, Kim HK, Schneewind O, Missiakas D. 2021. A protein A based Staphylococcus aureus vaccine with improved safety. Vaccine 39:3907–15
    [Google Scholar]
  95. 95.
    Lazar GA, Dang W, Karki S, Vafa O, Peng JS et al. 2006. Engineered antibody Fc variants with enhanced effector function. PNAS 103:4005–10
    [Google Scholar]
  96. 96.
    Forero-Torres A, de Vos S, Pohlman BL, Pashkevich M, Cronier DM et al. 2012. Results of a phase 1 study of AME-133v (LY2469298), an Fc-engineered humanized monoclonal anti-CD20 antibody, in FcγRIIIa-genotyped patients with previously treated follicular lymphoma. Clin. Cancer Res. 18:1395–403
    [Google Scholar]
  97. 97.
    Rugo HS, Im SA, Cardoso F, Cortes J, Curigliano G et al. 2021. Efficacy of margetuximab versus trastuzumab in patients with pretreated ERBB2-positive advanced breast cancer: a phase 3 randomized clinical trial. JAMA Oncol. 7:573–84
    [Google Scholar]
  98. 98.
    Jendeberg L, Nilsson P, Larsson A, Denker P, Uhlen M et al. 1997. Engineering of Fc1 and Fc3 from human immunoglobulin G to analyse subclass specificity for staphylococcal protein A. J. Immunol. Methods 201:25–34
    [Google Scholar]
  99. 99.
    Chen X, Schneewind O, Missiakas D. 2022. Engineered human antibodies for the opsonization and killing of Staphylococcus aureus. PNAS 119:e2114478119
    [Google Scholar]
  100. 100.
    Chu TH, Patz EF Jr., Ackerman ME. 2021. Coming together at the hinges: therapeutic prospects of IgG3. MAbs 13:1882028
    [Google Scholar]
  101. 101.
    Sprague ER, Wang C, Baker D, Bjorkman PJ. 2006. Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging. PLOS Biol. 4:e148
    [Google Scholar]
  102. 102.
    Sprague ER, Reinhard H, Cheung EJ, Farley AH, Trujillo RD et al. 2008. The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G. J. Virol. 82:3490–99
    [Google Scholar]
  103. 103.
    Ndjamen B, Joshi DS, Fraser SE, Bjorkman PJ. 2016. Characterization of antibody bipolar bridging mediated by the human cytomegalovirus Fc receptor gp68. J. Virol. 90:3262–67
    [Google Scholar]
  104. 104.
    Jenks JA, Goodwin ML, Permar SR. 2019. The roles of host and viral antibody Fc receptors in herpes simplex virus (HSV) and human cytomegalovirus (HCMV) infections and immunity. Front. Immunol. 10:2110
    [Google Scholar]
  105. 105.
    Frank I, Friedman HM. 1989. A novel function of the herpes simplex virus type 1 Fc receptor: participation in bipolar bridging of antiviral immunoglobulin G. J. Virol. 63:4479–88
    [Google Scholar]
  106. 106.
    Manley K, Anderson J, Yang F, Szustakowski J, Oakeley EJ et al. 2011. Human cytomegalovirus escapes a naturally occurring neutralizing antibody by incorporating it into assembling virions. Cell Host Microbe 10:197–209
    [Google Scholar]
  107. 107.
    Kolb P, Hoffmann K, Sievert A, Reinhard H, Merce-Maldonado E et al. 2021. Human cytomegalovirus antagonizes activation of Fcγ receptors by distinct and synergizing modes of IgG manipulation. eLife 10:e63877
    [Google Scholar]
  108. 108.
    Lubinski JM, Lazear HM, Awasthi S, Wang F, Friedman HM 2011. The herpes simplex virus 1 IgG Fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo. J. Virol. 85:3239–49
    [Google Scholar]
  109. 109.
    Corrales-Aguilar E, Trilling M, Hunold K, Fiedler M, Le VT et al. 2014. Human cytomegalovirus Fcγ binding proteins gp34 and gp68 antagonize Fcγ receptors I, II and III. PLOS Pathog. 10:e1004131
    [Google Scholar]
  110. 110.
    Vlahava V-M, Murrell I, Zhuang L, Aicheler RJ, Lim E et al. 2021. Monoclonal antibodies targeting nonstructural viral antigens can activate ADCC against human cytomegalovirus. J. Clin. Invest. 131:e139296
    [Google Scholar]
  111. 111.
    Joller N, Weber SS, Muller AJ, Sporri R, Selchow P et al. 2010. Antibodies protect against intracellular bacteria by Fc receptor-mediated lysosomal targeting. PNAS 107:20441–46
    [Google Scholar]
  112. 112.
    Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K et al. 2014. Complement is activated by IgG hexamers assembled at the cell surface. Science 343:1260–63
    [Google Scholar]
  113. 113.
    van Kampen MD, Kuipers-De Wilt LHAM, van Egmond ML, Reinders-Blankert P, van den Bremer ETJ et al. 2022. Biophysical characterization and stability of modified IgG1 antibodies with different hexamerization propensities. J. Pharm. Sci. 111:1587–98
    [Google Scholar]
  114. 114.
    Gulati S, Beurskens FJ, de Kreuk BJ, Roza M, Zheng B et al. 2019. Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLOS Biol. 17:e3000323
    [Google Scholar]
  115. 115.
    Meri S, Jordens M, Jarva H. 2008. Microbial complement inhibitors as vaccines. Vaccine 26:Suppl. 8I113–17
    [Google Scholar]
  116. 116.
    Giuntini S, Reason DC, Granoff DM. 2011. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding. Infect. Immun. 79:3751–59
    [Google Scholar]
  117. 117.
    Biolchi A, Tomei S, Santini L, La Gaetana R, Mori E et al. 2021. Four-component meningococcal serogroup B vaccine induces antibodies with bactericidal activity against diverse outbreak strains in adolescents. Pediatr. Infect. Dis. J. 40:e66–e71
    [Google Scholar]
  118. 118.
    Granoff DM, Giuntini S, Gowans FA, Lujan E, Sharkey K, Beernink PT. 2016. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding. JCI Insight 1:e88907
    [Google Scholar]
  119. 119.
    Thiriard A, Raze D, Locht C. 2018. Diversion of complement-mediated killing by Bordetella. Microbes Infect. 20:512–20
    [Google Scholar]
  120. 120.
    Badarau A, Trstenjak N, Nagy E. 2017. Structure and function of the two-component cytotoxins of Staphylococcus aureus—learnings for designing novel therapeutics. Adv. Exp. Med. Biol. 966:15–35
    [Google Scholar]
  121. 121.
    Francois B, Jafri HS, Chastre J, Sanchez-Garcia M, Eggimann P et al. 2021. Efficacy and safety of suvratoxumab for prevention of Staphylococcus aureus ventilator-associated pneumonia (SAATELLITE): a multicentre, randomised, double-blind, placebo-controlled, parallel-group, phase 2 pilot trial. Lancet Infect. Dis. 21:1313–23
    [Google Scholar]
  122. 122.
    Francois B, Mercier E, Gonzalez C, Asehnoune K, Nseir S et al. 2018. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus: first-in-human trial. Intensive Care Med. 44:1787–96
    [Google Scholar]
  123. 123.
    Rouha H, Badarau A, Visram ZC, Battles MB, Prinz B et al. 2015. Five birds, one stone: neutralization of α-hemolysin and 4 bi-component leukocidins of Staphylococcus aureus with a single human monoclonal antibody. MAbs 7:243–54
    [Google Scholar]
  124. 124.
    Szijarto V, Guachalla LM, Hartl K, Varga C, Badarau A et al. 2017. Endotoxin neutralization by an O-antigen specific monoclonal antibody: a potential novel therapeutic approach against Klebsiella pneumoniae ST258. Virulence 8:1203–15
    [Google Scholar]
  125. 125.
    Rouha H, Weber S, Janesch P, Maierhofer B, Gross K et al. 2018. Disarming Staphylococcus aureus from destroying human cells by simultaneously neutralizing six cytotoxins with two human monoclonal antibodies. Virulence 9:231–47
    [Google Scholar]
  126. 126.
    Magyarics Z, Leslie F, Bartko J, Rouha H, Luperchio S et al. 2019. Randomized, double-blind, placebo-controlled, single-ascending-dose study of the penetration of a monoclonal antibody combination (ASN100) targeting Staphylococcus aureus cytotoxins in the lung epithelial lining fluid of healthy volunteers. Antimicrob. Agents Chemother. 63:e00350-19
    [Google Scholar]
  127. 127.
    Stein RL. 2022. Kinetic studies of the activation of Bordetella pertussis adenylate cyclase by calmodulin. Biochemistry 61:554–62
    [Google Scholar]
  128. 128.
    Gray MC, Hewlett EL. 2011. Cell cycle arrest induced by the bacterial adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Cell Microbiol. 13:123–34
    [Google Scholar]
  129. 129.
    Fedele G, Schiavoni I, Adkins I, Klimova N, Sebo P. 2017. Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: a subversive move to fool host immunity. Toxins 9:293
    [Google Scholar]
  130. 130.
    Goldsmith JA, DiVenere AM, Maynard JA, McLellan JS. 2021. Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLOS Pathog. 17:e1009920
    [Google Scholar]
  131. 131.
    Goldsmith JA, DiVenere AM, Maynard JA, McLellan JS. 2022. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell Rep. 40:111196
    [Google Scholar]
  132. 132.
    DiVenere AM, Amengor D, Silva RP, Goldsmith JA, McLellan JS, Maynard JA. 2022. Blockade of the adenylate cyclase toxin synergizes with opsonizing antibodies to protect mice against Bordetella pertussis. mBio 13:e0152722
    [Google Scholar]
  133. 133.
    Tkaczyk C, Kasturirangan S, Minola A, Jones-Nelson O, Gunter V et al. 2017. Multimechanistic monoclonal antibodies (MAbs) targeting Staphylococcus aureus alpha-toxin and clumping factor a: activity and efficacy comparisons of a MAb combination and an engineered bispecific antibody approach. Antimicrob. Agents Chemother. 61:e00629-17
    [Google Scholar]
  134. 134.
    Thwaites GE, Gant V. 2011. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?. Nat. Rev. Microbiol. 9:215–22
    [Google Scholar]
  135. 135.
    Rungelrath V, Porter AR, Malachowa N, Freedman BA, Leung JM et al. 2021. Further insight into the mechanism of human PMN lysis following phagocytosis of Staphylococcus aureus. . Microbiol. Spectr. 9:e0088821
    [Google Scholar]
  136. 136.
    DuMont AL, Yoong P, Surewaard BG, Benson MA, Nijland R et al. 2013. Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect. Immun. 81:1830–41
    [Google Scholar]
  137. 137.
    Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK et al. 2015. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527:323–28
    [Google Scholar]
  138. 138.
    Staben LR, Koenig SG, Lehar SM, Vandlen R, Zhang D et al. 2016. Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody-drug conjugates. Nat. Chem. 8:1112–19
    [Google Scholar]
  139. 139.
    Zhou C, Lehar S, Gutierrez J, Rosenberger CM, Ljumanovic N et al. 2016. Pharmacokinetics and pharmacodynamics of DSTA4637A: a novel THIOMAB antibody antibiotic conjugate against Staphylococcus aureus in mice. MAbs 8:1612–19
    [Google Scholar]
  140. 140.
    Kajihara KK, Pantua H, Hernandez-Barry H, Hazen M, Deshmukh K et al. 2021. Potent killing of Pseudomonas aeruginosa by an antibody-antibiotic conjugate. mBio 12:e0020221
    [Google Scholar]
  141. 141.
    Taylor A, Jenner D, Rowland C, Laws T, Norville I, Prior J. 2021. Monoclonal antibodies opsonize Burkholderia spp. and reduce intracellular actin tail formation in a macrophage infection assay. J. Bacteriol. 203:e0024421
    [Google Scholar]
  142. 142.
    Chastre J, Francois B, Bourgeois M, Komnos A, Ferrer R et al. 2022. Safety, efficacy, and pharmacokinetics of gremubamab (MEDI3902), an anti-Pseudomonas aeruginosa bispecific human monoclonal antibody, in P. aeruginosa-colonised, mechanically ventilated intensive care unit patients: a randomised controlled trial. Crit. Care 26:355
    [Google Scholar]
  143. 143.
    Heimer SR, Evans DJ, Stern ME, Barbieri JT, Yahr T, Fleiszig SM. 2013. Pseudomonas aeruginosa utilizes the type III secreted toxin ExoS to avoid acidified compartments within epithelial cells. PLOS ONE 8:e73111
    [Google Scholar]
  144. 144.
    Thanabalasuriar A, Surewaard BG, Willson ME, Neupane AS, Stover CK et al. 2017. Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J. Clin. Investig. 127:2249–61
    [Google Scholar]
  145. 145.
    Wec AZ, Nyakatura EK, Herbert AS, Howell KA, Holtsberg FW et al. 2016. A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses. Science 354:350–54
    [Google Scholar]
  146. 146.
    Bai Y, Ye L, Tesar DB, Song H, Zhao D et al. 2011. Intracellular neutralization of viral infection in polarized epithelial cells by neonatal Fc receptor (FcRn)-mediated IgG transport. PNAS 108:18406–11
    [Google Scholar]
  147. 147.
    Caddy SL, Vaysburd M, Wing M, Foss S, Andersen JT et al. 2020. Intracellular neutralisation of rotavirus by VP6-specific IgG. PLOS Pathog. 16:e1008732
    [Google Scholar]
  148. 148.
    LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. 2004. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. PNAS 101:3083–88
    [Google Scholar]
  149. 149.
    Wirchnianski AS, Wec AZ, Nyakatura EK, Herbert AS, Slough MM et al. 2021. Two distinct lysosomal targeting strategies afford Trojan horse antibodies with pan-filovirus activity. Front. Immunol. 12:729851
    [Google Scholar]
  150. 150.
    Gaston J, Maestrali N, Lalle G, Gagnaire M, Masiero A et al. 2019. Intracellular delivery of therapeutic antibodies into specific cells using antibody–peptide fusions. Sci. Rep. 9:18688
    [Google Scholar]
  151. 151.
    Zhang W, Lin M, Yan Q, Budachetri K, Hou L et al. 2021. An intracellular nanobody targeting T4SS effector inhibits Ehrlichia infection. PNAS 118:e2024102118
    [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-101121-084508
Loading
/content/journals/10.1146/annurev-chembioeng-101121-084508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error