1932

Abstract

Native mass spectrometry (nMS) has emerged as an important tool in studying the structure and function of macromolecules and their complexes in the gas phase. In this review, we cover recent advances in nMS and related techniques including sample preparation, instrumentation, activation methods, and data analysis software. These advances have enabled nMS-based techniques to address a variety of challenging questions in structural biology. The second half of this review highlights recent applications of these technologies and surveys the classes of complexes that can be studied with nMS. Complementarity of nMS to existing structural biology techniques and current challenges in nMS are also addressed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-092721-085421
2022-05-09
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-092721-085421.html?itemId=/content/journals/10.1146/annurev-biophys-092721-085421&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahnert SE, Marsh JA, Hernández H, Robinson CV, Teichmann SA 2015. Principles of assembly reveal a periodic table of protein complexes. Science 350:6266aaa2245
    [Google Scholar]
  2. 2.
    Allison TM, Reading E, Liko I, Baldwin AJ, Laganowsky A, Robinson CV 2015. Quantifying the stabilizing effects of protein-ligand interactions in the gas phase. Nat. Commun. 6:8551
    [Google Scholar]
  3. 3.
    Ambrose S, Housden NG, Gupta K, Fan J, White P et al. 2017. Native desorption electrospray ionization liberates soluble and membrane protein complexes from surfaces. Angew. Chem. 129:4614655–60
    [Google Scholar]
  4. 4.
    Bailey AO, Han G, Phung W, Gazis P, Sutton J et al. 2018. Charge variant native mass spectrometry benefits mass precision and dynamic range of monoclonal antibody intact mass analysis. mAbs 10:81214–25
    [Google Scholar]
  5. 5.
    Barrera NP, Bartolo ND, Booth PJ, Robinson CV. 2008. Micelles protect membrane complexes from solution to vacuum. Science 321:5886243–46
    [Google Scholar]
  6. 6.
    Bashyal A, Sanders JD, Holden DD, Brodbelt JS. 2019. Top-down analysis of proteins in low charge states. J. Am. Soc. Mass Spectrom. 30:4704–17
    [Google Scholar]
  7. 7.
    Benesch JL, Ruotolo BT. 2011. Mass spectrometry: come of age for structural and dynamical biology. Curr. Opin. Struct. Biol. 21:5641–49
    [Google Scholar]
  8. 8.
    Ben-Nissan G, Sharon M. 2018. The application of ion-mobility mass spectrometry for structure/function investigation of protein complexes. Curr. Opin. Chem. Biol. 42:25–33
    [Google Scholar]
  9. 9.
    Ben-Nissan G, Vimer S, Warszawski S, Katz A, Yona M et al. 2018. Rapid characterization of secreted recombinant proteins by native mass spectrometry. Commun. Biol. 1:213
    [Google Scholar]
  10. 10.
    Bern M, Caval T, Kil YJ, Tang W, Becker C et al. 2018. Parsimonious charge deconvolution for native mass spectrometry. J. Proteome Res. 17:31216–26
    [Google Scholar]
  11. 11.
    Bleiholder C, Wyttenbach T, Bowers MT. 2011. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (I). Method. Int. J. Mass Spectrom. 308:11–10
    [Google Scholar]
  12. 12.
    Bolla JR, Agasid MT, Mehmood S, Robinson CV. 2019. Membrane protein-lipid interactions probed using mass spectrometry. Annu. Rev. Biochem. 88:85–111
    [Google Scholar]
  13. 13.
    Bond KM, Lyktey NA, Tsvetkova IB, Dragnea B, Jarrold MF. 2020. Disassembly intermediates of the brome mosaic virus identified by charge detection mass spectrometry. J. Phys. Chem. B 124:112124–31
    [Google Scholar]
  14. 14.
    Boyken SE, Benhaim MA, Busch F, Jia M, Bick MJ et al. 2019. De novo design of tunable, pH-driven conformational changes. Science 364:6441658–64
    [Google Scholar]
  15. 15.
    Brown BA, Zeng X, Todd AR, Barnes LF, Winstone JMA et al. 2020. Charge detection mass spectrometry measurements of exosomes and other extracellular particles enriched from bovine milk. Anal. Chem. 92:43285–92
    [Google Scholar]
  16. 16.
    Busch F, VanAernum ZL, Lai SM, Gopalan V, Wysocki VH 2021. Analysis of tagged proteins using tandem affinity-buffer exchange chromatography online with native mass spectrometry. Biochemistry 60:241876–84
    [Google Scholar]
  17. 17.
    Butler KE, Takinami Y, Rainczuk A, Baker ES, Roberts BR. 2021. Utilizing ion mobility-mass spectrometry to investigate the unfolding pathway of Cu/Zn superoxide dismutase. Front. Chem. 9:614595
    [Google Scholar]
  18. 18.
    Caldwell BJ, Norris A, Zakharova E, Smith CE, Wheat CT et al. 2021. Oligomeric complexes formed by Redβ single strand annealing protein in its different DNA bound states. Nucleic Acids Res 49:63441–60
    [Google Scholar]
  19. 19.
    Campuzano IDG, Sandoval W. 2021. Denaturing and native mass spectrometric analytics for biotherapeutic drug discovery research: historical, current, and future personal perspectives. J. Am. Soc. Mass Spectrom. 32:81861–85
    [Google Scholar]
  20. 20.
    Chai M, Young MN, Liu FC, Bleiholder C. 2018. A transferable, sample-independent calibration procedure for trapped ion mobility spectrometry (TIMS). Anal. Chem. 90:159040–47
    [Google Scholar]
  21. 21.
    Chen D, McCool EN, Yang Z, Shen X, Lubeckyj RA et al. 2021. Recent advances (2019–2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. Mass Spectrom. Rev. In press
    [Google Scholar]
  22. 22.
    Chen L, Tanimoto A, So BR, Bakhtina M, Magliery TJ et al. 2019. Stoichiometry of triple-sieve tRNA editing complex ensures fidelity of aminoacyl-tRNA formation. Nucleic Acids Res 47:2929–40
    [Google Scholar]
  23. 23.
    Chen Z, Boyken SE, Jia M, Busch F, Flores-Solis D et al. 2019. Programmable design of orthogonal protein heterodimers. Nature 565:7737106–11
    [Google Scholar]
  24. 24.
    Chen Z, Kibler RD, Hunt A, Busch F, Pearl J et al. 2020. De novo design of protein logic gates. Science 368:648678–84
    [Google Scholar]
  25. 25.
    Chorev DS, Baker LA, Wu D, Beilsten-Edmands V, Rouse SL et al. 2018. Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science 362:6416829–34
    [Google Scholar]
  26. 26.
    Chorev DS, Tang H, Rouse SL, Bolla JR, von Kügelgen A et al. 2020. The use of sonicated lipid vesicles for mass spectrometry of membrane protein complexes. Nat. Protoc. 15:51690–706
    [Google Scholar]
  27. 27.
    Cleary SP, Thompson AM, Prell JS. 2016. Fourier analysis method for analyzing highly congested mass spectra of ion populations with repeated subunits. Anal. Chem. 88:126205–13
    [Google Scholar]
  28. 28.
    Cong X, Liu Y, Liu W, Liang X, Laganowsky A. 2017. Allosteric modulation of protein-protein interactions by individual lipid binding events. Nat. Commun. 8:2203
    [Google Scholar]
  29. 29.
    Cong X, Liu Y, Liu W, Liang X, Russell DH, Laganowsky A. 2016. Determining membrane protein-lipid binding thermodynamics using native mass spectrometry. J. Am. Chem. Soc. 138:134346–49
    [Google Scholar]
  30. 30.
    Cveticanin J, Netzer R, Arkind G, Fleishman SJ, Horovitz A, Sharon M 2018. Estimating interprotein pairwise interaction energies in cell lysates from a single native mass spectrum. Anal. Chem. 90:1710090–94
    [Google Scholar]
  31. 31.
    Degiacomi MT, Benesch JLP. 2016. EM∩IM: software for relating ion mobility mass spectrometry and electron microscopy data. Analyst 141:170–75
    [Google Scholar]
  32. 32.
    Deslignière E, Ley M, Bourguet M, Ehkirch A, Botzanowski T et al. 2021. Pushing the limits of native MS: online SEC-native MS for structural biology applications. Int. J. Mass Spectrom. 461:116502
    [Google Scholar]
  33. 33.
    Dixit SM, Polasky DA, Ruotolo BT. 2018. Collision induced unfolding of isolated proteins in the gas phase: past, present, and future. Curr. Opin. Chem. Biol. 42:93–100
    [Google Scholar]
  34. 34.
    Doussineau T, Mathevon C, Altamura L, Vendrely C, Dugourd P et al. 2016. Mass determination of entire amyloid fibrils by using mass spectrometry. Angew. Chem. 128:72386–90
    [Google Scholar]
  35. 35.
    Dunbar CA, Callaway HM, Parrish CR, Jarrold MF. 2018. Probing antibody binding to canine parvovirus with charge detection mass spectrometry. J. Am. Chem. Soc. 140:4615701–11
    [Google Scholar]
  36. 36.
    Dunbar CA, Rayaprolu V, Wang JC-Y, Brown CJ, Leishman E et al. 2019. Dissecting the components of Sindbis virus from arthropod and vertebrate hosts: implications for infectivity differences. ACS Infect. Dis. 5:6892–902
    [Google Scholar]
  37. 37.
    Dyachenko A, Gruber R, Shimon L, Horovitz A, Sharon M. 2013. Allosteric mechanisms can be distinguished using structural mass spectrometry. PNAS 110:187235–39
    [Google Scholar]
  38. 38.
    Ehkirch A, D'Atri V, Rouviere F, Hernandez-Alba O, Goyon A et al. 2018. An online four-dimensional HIC×SEC-IM×MS methodology for proof-of-concept characterization of antibody drug conjugates. Anal. Chem. 90:31578–86
    [Google Scholar]
  39. 39.
    Ehkirch A, Hernandez-Alba O, Colas O, Beck A, Guillarme D, Cianférani S 2018. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J. Chromatogr. B 1086:176–83
    [Google Scholar]
  40. 40.
    Eldrid C, Ujma J, Kalfas S, Tomczyk N, Giles K et al. 2019. Gas phase stability of protein ions in a cyclic ion mobility spectrometry traveling wave device. Anal. Chem. 91:127554–61
    [Google Scholar]
  41. 41.
    Elliott AG, Harper CC, Lin H-W, Williams ER. 2017. Mass, mobility and MSn measurements of single ions using charge detection mass spectrometry. Analyst 142:152760–69
    [Google Scholar]
  42. 42.
    Elliott AG, Merenbloom SI, Chakrabarty S, Williams ER 2017. Single particle analyzer of mass: a charge detection mass spectrometer with a multi-detector electrostatic ion trap. Int. J. Mass Spectrom. 414:45–55
    [Google Scholar]
  43. 43.
    Eschweiler JD, Rabuck-Gibbons JN, Tian Y, Ruotolo BT 2015. CIUSuite: a quantitative analysis package for collision induced unfolding measurements of gas-phase protein ions. Anal. Chem. 87:2211516–22
    [Google Scholar]
  44. 44.
    Ewing SA, Donor MT, Wilson JW, Prell JS 2017. Collidoscope: an improved tool for computing collisional cross-sections with the trajectory method. J. Am. Soc. Mass Spectrom. 28:4587–96
    [Google Scholar]
  45. 45.
    Fantin SM, Parson KF, Niu S, Liu J, Polasky DA et al. 2019. Collision induced unfolding classifies ligands bound to the integral membrane translocator protein. Anal. Chem. 91:2415469–76
    [Google Scholar]
  46. 46.
    Felitsyn N, Kitova EN, Klassen JS. 2001. Thermal decomposition of a gaseous multiprotein complex studied by blackbody infrared radiative dissociation: investigating the origin of the asymmetric dissociation behavior. Anal. Chem. 73:194647–61
    [Google Scholar]
  47. 47.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:492664–71
    [Google Scholar]
  48. 48.
    Flick TG, Cassou CA, Chang TM, Williams ER 2012. Solution additives that desalt protein ions in native mass spectrometry. Anal. Chem. 84:177511–17
    [Google Scholar]
  49. 49.
    Foreman DJ, McLuckey SA. 2020. Recent developments in gas-phase ion/ion reactions for analytical mass spectrometry. Anal. Chem. 92:1252–66
    [Google Scholar]
  50. 50.
    Forsberg E, Fang M, Siuzdak G. 2017. Staying alive: measuring intact viable microbes with electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 28:114–20
    [Google Scholar]
  51. 51.
    Fort KL, van de Waterbeemd M, Boll D, Reinhardt-Szyba M, Belov ME et al. 2018. Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst 143:1100–5
    [Google Scholar]
  52. 52.
    Franc V, Yang Y, Heck AJR 2017. Proteoform profile mapping of the human serum complement component C9 revealing unexpected new features of N-, O-, and C-glycosylation. Anal. Chem. 89:63483–91
    [Google Scholar]
  53. 53.
    Franc V, Zhu J, Heck AJR. 2018. Comprehensive proteoform characterization of plasma complement component C8αβγ by hybrid mass spectrometry approaches. J. Am. Soc. Mass Spectrom. 29:61099–110
    [Google Scholar]
  54. 54.
    France AP, Migas LG, Sinclair E, Bellina B, Barran PE 2020. Using collision cross section distributions to assess the distribution of collision cross section values. Anal. Chem. 92:64340–48
    [Google Scholar]
  55. 55.
    Gabelica V, Marklund E. 2018. Fundamentals of ion mobility spectrometry. Curr. Opin. Chem. Biol. 42:51–59
    [Google Scholar]
  56. 56.
    Gabelica V, Vreuls C, Filée P, Duval V, Joris B, Pauw ED 2002. Advantages and drawbacks of nanospray for studying noncovalent protein-DNA complexes by mass spectrometry. Rapid Commun. Mass Spectrom. 16:181723–28
    [Google Scholar]
  57. 57.
    Gadzuk-Shea MM, Bush MF 2018. Effects of charge state on the structures of serum albumin ions in the gas phase: insights from cation-to-anion proton-transfer reactions, ion mobility, and mass spectrometry. J. Phys. Chem. B 122:439947–55
    [Google Scholar]
  58. 58.
    Gan J, Ben-Nissan G, Arkind G, Tarnavsky M, Trudeau D et al. 2017. Native mass spectrometry of recombinant proteins from crude cell lysates. Anal. Chem. 89:84398–404
    [Google Scholar]
  59. 59.
    Gault J, Liko I, Landreh M, Shutin D, Bolla JR et al. 2020. Combining native and “omics” mass spectrometry to identify endogenous ligands bound to membrane proteins. Nat. Methods 17:5505–8
    [Google Scholar]
  60. 60.
    Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. 2004. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun. Mass Spectrom. 18:202401–14
    [Google Scholar]
  61. 61.
    Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K et al. 2019. A cyclic ion mobility-mass spectrometry system. Anal. Chem. 91:138564–73
    [Google Scholar]
  62. 62.
    Giles K, Williams JP, Campuzano I 2011. Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25:111559–66
    [Google Scholar]
  63. 63.
    Gruber R, Horovitz A. 2018. Unpicking allosteric mechanisms of homo-oligomeric proteins by determining their successive ligand binding constants. Philos. Trans. R. Soc. B 373: 1749.20170176
    [Google Scholar]
  64. 64.
    Gupta K, Li J, Liko I, Gault J, Bechara C et al. 2018. Identifying key membrane protein lipid interactions using mass spectrometry. Nat. Protoc. 13:51106–20
    [Google Scholar]
  65. 65.
    Hale OJ, Cooper HJ. 2021. Native mass spectrometry imaging of proteins and protein complexes by nano-DESI. Anal. Chem. 93:104619–27
    [Google Scholar]
  66. 66.
    Hall Z, Politis A, Bush MF, Smith LJ, Robinson CV. 2012. Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics. J. Am. Chem. Soc. 134:73429–38
    [Google Scholar]
  67. 67.
    Harvey SR, Seffernick JT, Quintyn RS, Song Y, Ju Y et al. 2019. Relative interfacial cleavage energetics of protein complexes revealed by surface collisions. PNAS 116:178143–48
    [Google Scholar]
  68. 68.
    Hellwig N, Peetz O, Ahdash Z, Tascón I, Booth PJ et al. 2018. Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chem. Commun. 54:9713702–5
    [Google Scholar]
  69. 69.
    Hogan JA, Jarrold MF. 2018. Optimized electrostatic linear ion trap for charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 29:102086–95
    [Google Scholar]
  70. 70.
    Hoi KK, Bada Juarez JF, Judge PJ, Yen H-Y, Wu D et al. 2021. Detergent-free lipodisq nanoparticles facilitate high-resolution mass spectrometry of folded integral membrane proteins. Nano Lett 21:72824–31
    [Google Scholar]
  71. 71.
    Holden DD, Brodbelt JS. 2016. Ultraviolet photodissociation of native proteins following proton transfer reactions in the gas phase. Anal. Chem. 88:2412354–62
    [Google Scholar]
  72. 72.
    Holmquist ML, Ihms EC, Gollnick P, Wysocki VH, Foster MP. 2020. Population distributions from native mass spectrometry titrations reveal nearest-neighbor cooperativity in the ring-shaped oligomeric protein TRAP. Biochemistry 59:272518–27
    [Google Scholar]
  73. 73.
    Hopper JTS, Yu YT-C, Li D, Raymond A, Bostock M et al. 2013. Detergent-free mass spectrometry of membrane protein complexes. Nat. Methods 10:121206–8
    [Google Scholar]
  74. 74.
    Hu J, Guan Q-Y, Wang J, Jiang X-X, Wu Z-Q et al. 2017. Effect of nanoemitters on suppressing the formation of metal adduct ions in electrospray ionization mass spectrometry. Anal. Chem. 89:31838–45
    [Google Scholar]
  75. 75.
    Huguet R, Mullen C, Srzentić K, Greer JB, Fellers RT et al. 2019. Proton transfer charge reduction enables high-throughput top-down analysis of large proteoforms. Anal. Chem. 91:2415732–39
    [Google Scholar]
  76. 76.
    Ibrahim YM, Garimella SVB, Prost SA, Wojcik R, Norheim RV et al. 2016. Development of an ion mobility spectrometry-Orbitrap mass spectrometer platform. Anal. Chem. 88:2412152–60
    [Google Scholar]
  77. 77.
    Jeanne Dit Fouque K, Garabedian A, Leng F, Tse-Dinh Y-C, Fernandez-Lima F 2019. Microheterogeneity of topoisomerase IA/IB and their DNA-bound states. ACS Omega 4:23619–26
    [Google Scholar]
  78. 78.
    Jeanne Dit Fouque K, Garabedian A, Leng F, Tse-Dinh Y-C, Ridgeway ME et al. 2021. Trapped ion mobility spectrometry of native macromolecular assemblies. Anal. Chem. 93:52933–41
    [Google Scholar]
  79. 79.
    Jhingree JR, Beveridge R, Dickinson ER, Williams JP, Brown JM et al. 2017. Electron transfer with no dissociation ion mobility-mass spectrometry (ETnoD IM-MS): the effect of charge reduction on protein conformation. Int. J. Mass Spectrom. 413:43–51
    [Google Scholar]
  80. 80.
    Jurchen JC, Williams ER. 2003. Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. J. Am. Chem. Soc. 125:92817–26
    [Google Scholar]
  81. 81.
    Kafader JO, Beu SC, Early BP, Melani RD, Durbin KR et al. 2019. STORI plots enable accurate tracking of individual ion signals. J. Am. Soc. Mass Spectrom. 30:112200–3
    [Google Scholar]
  82. 82.
    Kafader JO, Melani RD, Durbin KR, Ikwuagwu B, Early BP et al. 2020. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. Nat. Methods 17:4391–94
    [Google Scholar]
  83. 83.
    Kafader JO, Melani RD, Senko MW, Makarov AA, Kelleher NL, Compton PD. 2019. Measurement of individual ions sharply increases the resolution of Orbitrap mass spectra of proteins. Anal. Chem. 91:42776–83
    [Google Scholar]
  84. 84.
    Karlsson OA, Sundell GN, Andersson E, Ivarsson Y, Jemth P 2016. Improved affinity at the cost of decreased specificity: a recurring theme in PDZ-peptide interactions. Sci. Rep. 6:34269
    [Google Scholar]
  85. 85.
    Keener JE, Zambrano DE, Zhang G, Zak CK, Reid DJ et al. 2019. Chemical additives enable native mass spectrometry measurement of membrane protein oligomeric state within intact nanodiscs. J. Am. Chem. Soc. 141:21054–61
    [Google Scholar]
  86. 86.
    Keifer DZ, Pierson EE, Jarrold MF. 2017. Charge detection mass spectrometry: weighing heavier things. Analyst 142:101654–71
    [Google Scholar]
  87. 87.
    Keifer DZ, Shinholt DL, Jarrold MF. 2015. Charge detection mass spectrometry with almost perfect charge accuracy. Anal. Chem. 87:2010330–37
    [Google Scholar]
  88. 88.
    Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W et al. 2018. Integrative structure and functional anatomy of a nuclear pore complex. Nature 555:7697475–82
    [Google Scholar]
  89. 89.
    Laganowsky A, Clemmer DE, Russell DH. 2022. Variable-temperature native mass spectrometry for studies of protein folding, stabilities, assembly, and molecular interactions. Annu. Rev. Biophys. 51:6377
    [Google Scholar]
  90. 90.
    Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT et al. 2014. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:7503172–75
    [Google Scholar]
  91. 91.
    Laganowsky A, Reading E, Hopper JTS, Robinson CV. 2013. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8:4639–51
    [Google Scholar]
  92. 92.
    Lai AL, Clerico EM, Blackburn ME, Patel NA, Robinson CV et al. 2017. Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. J. Biol. Chem. 292:218773–85
    [Google Scholar]
  93. 93.
    Lai LB, Tanimoto A, Lai SM, Chen W-Y, Marathe IA et al. 2017. A novel double kink-turn module in euryarchaeal RNase P RNAs. Nucleic Acids Res 45:127432–40
    [Google Scholar]
  94. 94.
    Landeras-Bueno S, Wasserman H, Oliveira G, VanAernum ZL, Busch F et al. 2021. Cellular mRNA triggers structural transformation of Ebola virus matrix protein VP40 to its essential regulatory form. Cell Rep 35:2108986
    [Google Scholar]
  95. 95.
    Laszlo KJ, Bush MF. 2015. Analysis of native-like proteins and protein complexes using cation to anion proton transfer reactions (CAPTR). J. Am. Soc. Mass Spectrom. 26:122152–61
    [Google Scholar]
  96. 96.
    Laszlo KJ, Munger EB, Bush MF. 2016. Folding of protein ions in the gas phase after cation-to-anion proton-transfer reactions. J. Am. Chem. Soc. 138:309581–88
    [Google Scholar]
  97. 97.
    Leney AC, McMorran LM, Radford SE, Ashcroft AE. 2012. Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal. Chem. 84:229841–47
    [Google Scholar]
  98. 98.
    Lermyte F, Łącki MK, Valkenborg D, Gambin A, Sobott F 2017. Conformational space and stability of ETD charge reduction products of ubiquitin. J. Am. Soc. Mass Spectrom. 28:169–76
    [Google Scholar]
  99. 99.
    Lermyte F, Williams JP, Brown JM, Martin EM, Sobott F 2015. Extensive charge reduction and dissociation of intact protein complexes following electron transfer on a quadrupole-ion mobility-time-of-flight MS. J. Am. Soc. Mass Spectrom. 26:71068–76
    [Google Scholar]
  100. 100.
    Liu FC, Cropley TC, Ridgeway ME, Park MA, Bleiholder C. 2020. Structural analysis of the glycoprotein complex avidin by tandem-trapped ion mobility spectrometry-mass spectrometry (tandem-TIMS/MS). Anal. Chem. 92:64459–67
    [Google Scholar]
  101. 101.
    Liu Y, LoCaste CE, Liu W, Poltash ML, Russell DH, Laganowsky A 2019. Selective binding of a toxin and phosphatidylinositides to a mammalian potassium channel. Nat. Commun. 10:1352
    [Google Scholar]
  102. 102.
    Lorenzen K, van Duijn E. 2010. Native mass spectrometry as a tool in structural biology. Curr. Protoc. Protein Sci. 62:117.12
    [Google Scholar]
  103. 103.
    Lutomski CA, El-Baba TJ, Bolla JR, Robinson CV 2021. Multiple roles of SARS-CoV-2 N protein facilitated by proteoform-specific interactions with RNA, host proteins, and convalescent antibodies. JACS Au 1:81147–57
    [Google Scholar]
  104. 104.
    Lutomski CA, Gordon SM, Remaley AT, Jarrold MF. 2018. Resolution of lipoprotein subclasses by charge detection mass spectrometry. Anal. Chem. 90:116353–56
    [Google Scholar]
  105. 105.
    Lutomski CA, Lyktey NA, Zhao Z, Pierson EE, Zlotnick A, Jarrold MF. 2017. Hepatitis B virus capsid completion occurs through error correction. J. Am. Chem. Soc. 139:4616932–38
    [Google Scholar]
  106. 106.
    Ma X, Lai LB, Lai SM, Tanimoto A, Foster MP et al. 2014. Uncovering the stoichiometry of Pyrococcus furiosus RNase P, a multi-subunit catalytic ribonucleoprotein complex, by surface-induced dissociation and ion mobility mass spectrometry. Angew. Chem. Int. Ed. 53:4311483–87
    [Google Scholar]
  107. 107.
    Macias LA, Santos IC, Brodbelt JS 2020. Ion activation methods for peptides and proteins. Anal. Chem. 92:1227–51
    [Google Scholar]
  108. 108.
    Mack E. 1925. Average cross-sectional areas of molecules by gaseous diffusion methods. J. Am. Chem. Soc. 47:102468–82
    [Google Scholar]
  109. 109.
    Marcoux J, Wang SC, Politis A, Reading E, Ma J et al. 2013. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump. PNAS 110:249704–9
    [Google Scholar]
  110. 110.
    Marklund EG, Degiacomi MT, Robinson CV, Baldwin AJ, Benesch JLP. 2015. Collision cross sections for structural proteomics. Structure 23:4791–99
    [Google Scholar]
  111. 111.
    Marty MT, Baldwin AJ, Marklund EG, Hochberg GKA, Benesch JLP, Robinson CV. 2015. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87:84370–76
    [Google Scholar]
  112. 112.
    Mason EA, Schamp HW. 1958. Mobility of gaseous ions in weak electric fields. Ann. Phys. 4:3233–70
    [Google Scholar]
  113. 113.
    McCabe JW, Hebert MJ, Shirzadeh M, Mallis CS, Denton JK et al. 2021. The IMS paradox: a perspective on structural ion mobility-mass spectrometry. Mass Spectrom. Rev. 40:3280–305
    [Google Scholar]
  114. 114.
    McCabe JW, Mallis CS, Kocurek KI, Poltash ML, Shirzadeh M et al. 2020. First-principles collision cross section measurements of large proteins and protein complexes. Anal. Chem. 92:1611155–63
    [Google Scholar]
  115. 115.
    McGee JP, Melani RD, Yip PF, Senko MW, Compton PD et al. 2021. Isotopic resolution of protein complexes up to 466 kDa using individual ion mass spectrometry. Anal. Chem. 93:52723–27
    [Google Scholar]
  116. 116.
    Mehaffey MR, Lee J, Jung J, Lanzillotti MB, Escobar EE et al. 2020. Mapping a conformational epitope of hemagglutinin A using native mass spectrometry and ultraviolet photodissociation. Anal. Chem. 92:1711869–78
    [Google Scholar]
  117. 117.
    Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF. 1996. Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100:4016082–86
    [Google Scholar]
  118. 118.
    Migas LG, France AP, Bellina B, Barran PE 2018. ORIGAMI: a software suite for activated ion mobility mass spectrometry (aIM-MS) applied to multimeric protein assemblies. Int. J. Mass Spectrom. 427:20–28
    [Google Scholar]
  119. 119.
    Miller LM, Barnes LF, Raab SA, Draper BE, El-Baba TJ et al. 2021. Heterogeneity of glycan processing on trimeric SARS-CoV-2 spike protein revealed by charge detection mass spectrometry. J. Am. Chem. Soc. 143:103959–66
    [Google Scholar]
  120. 120.
    Mistarz UH, Chandler SA, Brown JM, Benesch JLP, Rand KD. 2019. Probing the dissociation of protein complexes by means of gas-phase H/D exchange mass spectrometry. J. Am. Soc. Mass Spectrom. 30:145–57
    [Google Scholar]
  121. 121.
    Olinares PDB, Dunn AD, Padovan JC, Fernandez-Martinez J, Rout MP, Chait BT. 2016. A robust workflow for native mass spectrometric analysis of affinity-isolated endogenous protein assemblies. Anal. Chem. 88:52799–807
    [Google Scholar]
  122. 122.
    Pagano L, Toto A, Malagrinò F, Visconti L, Jemth P, Gianni S 2021. Double mutant cycles as a tool to address folding, binding, and allostery. Int. J. Mol. Sci. 22:2828
    [Google Scholar]
  123. 123.
    Panczyk EM, Snyder DT, Ridgeway ME, Somogyi Á, Park MA, Wysocki VH 2021. Surface-induced dissociation of protein complexes selected by trapped ion mobility spectrometry. Anal. Chem. 93:135513–20
    [Google Scholar]
  124. 124.
    Patrick JW, Boone CD, Liu W, Conover GM, Liu Y et al. 2018. Allostery revealed within lipid binding events to membrane proteins. PNAS 115:122976–81
    [Google Scholar]
  125. 125.
    Pierson EE, Contino NC, Keifer DZ, Jarrold MF. 2015. Charge detection mass spectrometry for single ions with an uncertainty in the charge measurement of 0.65 e. J. Am. Soc. Mass Spectrom. 26:71213–20
    [Google Scholar]
  126. 126.
    Poltash ML, McCabe JW, Patrick JW, Laganowsky A, Russell DH 2019. Development and evaluation of a reverse-entry ion source Orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 30:1192–98
    [Google Scholar]
  127. 127.
    Poltash ML, McCabe JW, Shirzadeh M, Laganowsky A, Clowers BH, Russell DH. 2018. Fourier transform-ion mobility-Orbitrap mass spectrometer: a next-generation instrument for native mass spectrometry. Anal. Chem. 90:1710472–78
    [Google Scholar]
  128. 128.
    Poltash ML, McCabe JW, Shirzadeh M, Laganowsky A, Russell DH. 2020. Native IM-Orbitrap MS: resolving what was hidden. Trends Anal. Chem. 124:115533
    [Google Scholar]
  129. 129.
    Reid DJ, Diesing JM, Miller MA, Perry SM, Wales JA et al. 2019. MetaUniDec: high-throughput deconvolution of native mass spectra. J. Am. Soc. Mass Spectrom. 30:1118–27
    [Google Scholar]
  130. 130.
    Ridgeway ME, Lubeck M, Jordens J, Mann M, Park MA. 2018. Trapped ion mobility spectrometry: a short review. Int. J. Mass Spectrom. 425:22–35
    [Google Scholar]
  131. 131.
    Sahasrabuddhe A, Hsia Y, Busch F, Sheffler W, King NP et al. 2018. Confirmation of intersubunit connectivity and topology of designed protein complexes by native MS. PNAS 115:61268–73
    [Google Scholar]
  132. 132.
    Saikusa K, Osakabe A, Kato D, Fuchigami S, Nagadoi A et al. 2018. Structural diversity of nucleosomes characterized by native mass spectrometry. Anal. Chem. 90:138217–26
    [Google Scholar]
  133. 133.
    Sakamoto W, Azegami N, Konuma T, Akashi S 2021. Single-cell native mass spectrometry of human erythrocytes. Anal. Chem. 93:176583–88
    [Google Scholar]
  134. 134.
    Sarni S, Biswas B, Liu S, Olson ED, Kitzrow JP et al. 2020. HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal. J. Biol. Chem. 295:4214391–401
    [Google Scholar]
  135. 135.
    Schneeberger E-M, Breuker K. 2017. Native top-down mass spectrometry of TAR RNA in complexes with a wild-type tat peptide for binding site mapping. Angew. Chem. 129:51274–78
    [Google Scholar]
  136. 136.
    Schneeberger E-M, Halper M, Palasser M, Heel SV, Vušurović J et al. 2020. Native mass spectrometry reveals the initial binding events of HIV-1 rev to RRE stem II RNA. Nat. Commun. 11:5750
    [Google Scholar]
  137. 137.
    Sever AIM, Yin V, Konermann L 2021. Interrogating the quaternary structure of noncanonical hemoglobin complexes by electrospray mass spectrometry and collision-induced dissociation. J. Am. Soc. Mass Spectrom. 32:1270–80
    [Google Scholar]
  138. 138.
    Sharon M, Horovitz A. 2015. Probing allosteric mechanisms using native mass spectrometry. Curr. Opin. Struct. Biol. 34:7–16
    [Google Scholar]
  139. 139.
    Shen X, Kou Q, Guo R, Yang Z, Chen D et al. 2018. Native proteomics in discovery mode using size-exclusion chromatography-capillary zone electrophoresis-tandem mass spectrometry. Anal. Chem. 90:1710095–99
    [Google Scholar]
  140. 140.
    Shvartsburg AA, Jarrold MF. 1996. An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261:186–91
    [Google Scholar]
  141. 141.
    Skinner OS, Haverland NA, Fornelli L, Melani RD, Do Vale LHF et al. 2018. Top-down characterization of endogenous protein complexes with native proteomics. Nat. Chem. Biol. 14:136–41
    [Google Scholar]
  142. 142.
    Snijder J, Kononova O, Barbu IM, Uetrecht C, Rurup WF et al. 2016. Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin. Biomacromolecules 17:82522–29
    [Google Scholar]
  143. 143.
    Snijder J, van de Waterbeemd M, Damoc E, Denisov E, Grinfeld D et al. 2014. Defining the stoichiometry and cargo load of viral and bacterial nanoparticles by Orbitrap mass spectrometry. J. Am. Chem. Soc. 136:207295–99
    [Google Scholar]
  144. 144.
    Snyder DT, Panczyk EM, Somogyi A, Kaplan DA, Wysocki V. 2020. Simple and minimally invasive SID devices for native mass spectrometry. Anal. Chem. 92:1611195–203
    [Google Scholar]
  145. 145.
    Sokolovski M, Cveticanin J, Hayoun D, Korobko I, Sharon M, Horovitz A 2017. Measuring inter-protein pairwise interaction energies from a single native mass spectrum by double-mutant cycle analysis. Nat. Commun. 8:212
    [Google Scholar]
  146. 146.
    Soltermann F, Foley EDB, Pagnoni V, Galpin M, Benesch JLP et al. 2020. Quantifying protein-protein interactions by molecular counting with mass photometry. Angew. Chem. Int. Ed. 59:2710774–79
    [Google Scholar]
  147. 147.
    Sonn-Segev A, Belacic K, Bodrug T, Young G, VanderLinden RT et al. 2020. Quantifying the heterogeneity of macromolecular machines by mass photometry. Nat. Commun. 11:1772
    [Google Scholar]
  148. 148.
    Srebalus CA, Li J, Marshall WS, Clemmer DE 1999. Gas-phase separations of electrosprayed peptide libraries. Anal. Chem. 71:183918–27
    [Google Scholar]
  149. 149.
    Stiving AQ, Jones BJ, Ujma J, Giles K, Wysocki VH 2020. Collision cross sections of charge-reduced proteins and protein complexes: a database for collision cross section calibration. Anal. Chem. 92:64475–83
    [Google Scholar]
  150. 150.
    Stiving AQ, VanAernum ZL, Busch F, Harvey SR, Sarni SH, Wysocki VH. 2019. Surface-induced dissociation: an effective method for characterization of protein quaternary structure. Anal. Chem. 91:1190–209
    [Google Scholar]
  151. 151.
    Struwe WB, Robinson CV. 2019. Relating glycoprotein structural heterogeneity to function—insights from native mass spectrometry. Curr. Opin. Struct. Biol. 58:241–48
    [Google Scholar]
  152. 152.
    Susa AC, Lippens JL, Xia Z, Loo JA, Campuzano IDG, Williams ER. 2018. Submicrometer emitter ESI tips for native mass spectrometry of membrane proteins in ionic and nonionic detergents. J. Am. Soc. Mass Spectrom. 29:1203–6
    [Google Scholar]
  153. 153.
    Susa AC, Xia Z, Williams ER 2017. Native mass spectrometry from common buffers with salts that mimic the extracellular environment. Angew. Chem. Int. Ed. 56:277912–15
    [Google Scholar]
  154. 154.
    Susa AC, Xia Z, Williams ER 2017. Small emitter tips for native mass spectrometry of proteins and protein complexes from nonvolatile buffers that mimic the intracellular environment. Anal. Chem. 89:53116–22
    [Google Scholar]
  155. 155.
    Tian Y, Han L, Buckner AC, Ruotolo BT. 2015. Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal. Chem. 87:2211509–15
    [Google Scholar]
  156. 156.
    Tian Y, Ruotolo BT. 2018. Collision induced unfolding detects subtle differences in intact antibody glycoforms and associated fragments. Int. J. Mass Spectrom. 425:1–9
    [Google Scholar]
  157. 157.
    van de Waterbeemd M, Snijder J, Tsvetkova IB, Dragnea BG, Cornelissen JJ, Heck AJR. 2016. Examining the heterogeneous genome content of multipartite viruses BMV and CCMV by native mass spectrometry. J. Am. Soc. Mass Spectrom. 27:61000–9
    [Google Scholar]
  158. 158.
    VanAernum ZL, Busch F, Jones BJ, Jia M, Chen Z et al. 2020. Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry. Nat. Protoc. 15:31132–57
    [Google Scholar]
  159. 159.
    VanAernum ZL, Gilbert JD, Belov ME, Makarov AA, Horning SR, Wysocki VH. 2019. Surface-induced dissociation of noncovalent protein complexes in an extended mass range Orbitrap mass spectrometer. Anal. Chem. 91:53611–18
    [Google Scholar]
  160. 160.
    Vimer S, Ben-Nissan G, Morgenstern D, Kumar-Deshmukh F, Polkinghorn C et al. 2020. Comparative structural analysis of 20S proteasome ortholog protein complexes by native mass spectrometry. ACS Cent. Sci. 6:4573–88
    [Google Scholar]
  161. 161.
    Vimer S, Ben-Nissan G, Sharon M. 2020. Direct characterization of overproduced proteins by native mass spectrometry. Nat. Protoc. 15:2236–65
    [Google Scholar]
  162. 162.
    Vimer S, Ben-Nissan G, Sharon M. 2020. Mass spectrometry analysis of intact proteins from crude samples. Anal. Chem. 92:1912741–49
    [Google Scholar]
  163. 163.
    Vorobieva AA, White P, Liang B, Horne JE, Bera AK et al. 2021. De novo design of transmembrane β barrels. Science 371:6531eabc8182
    [Google Scholar]
  164. 164.
    Vušurović J, Breuker K. 2019. Relative strength of noncovalent interactions and covalent backbone bonds in gaseous RNA-peptide complexes. Anal. Chem. 91:21659–64
    [Google Scholar]
  165. 165.
    Wei B, Han G, Tang J, Sandoval W, Zhang YT. 2019. Native hydrophobic interaction chromatography hyphenated to mass spectrometry for characterization of monoclonal antibody minor variants. Anal. Chem. 91:2415360–64
    [Google Scholar]
  166. 166.
    Wilm M, Mann M. 1996. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68:11–8
    [Google Scholar]
  167. 167.
    Wörner TP, Bennett A, Habka S, Snijder J, Friese O et al. 2021. Adeno-associated virus capsid assembly is divergent and stochastic. Nat. Commun. 12:1642
    [Google Scholar]
  168. 168.
    Wörner TP, Snijder J, Bennett A, Agbandje-McKenna M, Makarov AA, Heck AJR. 2020. Resolving heterogeneous macromolecular assemblies by Orbitrap-based single-particle charge detection mass spectrometry. Nat. Methods 17:4395–98
    [Google Scholar]
  169. 169.
    Wysocki VH, Jones CM, Galhena AS, Blackwell AE. 2008. Surface-induced dissociation shows potential to be more informative than collision-induced dissociation for structural studies of large systems. J. Am. Soc. Mass Spectrom. 19:7903–13
    [Google Scholar]
  170. 170.
    Wysocki VH, Joyce KE, Jones CM, Beardsley RL. 2008. Surface-induced dissociation of small molecules, peptides, and non-covalent protein complexes. J. Am. Soc. Mass Spectrom. 19:2190–208
    [Google Scholar]
  171. 171.
    Yang F, Xiao X, Cheng W, Yang W, Yu P et al. 2015. Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat. Chem. Biol. 11:7518–24
    [Google Scholar]
  172. 172.
    Yang Y, Niu C, Bobst CE, Kaltashov IA. 2021. Charge manipulation using solution and gas-phase chemistry to facilitate analysis of highly heterogeneous protein complexes in native mass spectrometry. Anal. Chem. 93:73337–42
    [Google Scholar]
  173. 173.
    Yen H-Y, Hopper JTS, Liko I, Allison TM, Zhu Y et al. 2017. Ligand binding to a G protein-coupled receptor captured in a mass spectrometer. Sci. Adv. 3:6e1701016
    [Google Scholar]
  174. 174.
    Zhang J, Loo RRO, Loo JA. 2017. Structural characterization of a thrombin-aptamer complex by high resolution native top-down mass spectrometry. J. Am. Soc. Mass Spectrom. 28:91815–22
    [Google Scholar]
  175. 175.
    Zhao Y, Abzalimov RR, Kaltashov IA. 2016. Interactions of intact unfractionated heparin with its client proteins can be probed directly using native electrospray ionization mass spectrometry. Anal. Chem. 88:31711–18
    [Google Scholar]
  176. 176.
    Zhao Z, Wang JC-Y, Zhang M, Lyktey NA, Jarrold MF et al. 2021. Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Nat. Commun. 12:589
    [Google Scholar]
  177. 177.
    Zhou M, Lantz C, Brown KA, Ge Y, Paša-Tolić L et al. 2020. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem. Sci. 11:4812918–36
    [Google Scholar]
  178. 178.
    Zhou M, Liu W, Shaw JB. 2020. Charge movement and structural changes in the gas-phase unfolding of multimeric protein complexes captured by native top-down mass spectrometry. Anal. Chem. 92:21788–95
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-092721-085421
Loading
/content/journals/10.1146/annurev-biophys-092721-085421
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error