1932

Abstract

Similar traits and functions commonly evolve in nature. Here, we explore patterns of replicated evolution across the plant kingdom and discuss the processes responsible for such patterns. We begin this review by defining replicated evolution and the theoretical, genetic, and ecological concepts that help explain it. We then focus our attention on empirical cases of replicated evolution at the phenotypic and genotypic levels. We find that replication at the ecotype level is common, but evidence for repeated ecological speciation is surprisingly sparse. On the other hand, the replicated evolution of ecological strategies and physiological mechanisms across similar biomes appears to be pervasive. We conclude by highlighting where future efforts can help us bridge the understanding of replicated evolution across different levels of biological organization. Earth's landscape is diverse but also repeats itself. Organisms seem to have followed suit.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-071221-090809
2023-05-22
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/74/1/annurev-arplant-071221-090809.html?itemId=/content/journals/10.1146/annurev-arplant-071221-090809&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aerts R, Chapin FS III 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30:1–67
    [Google Scholar]
  2. 2.
    Agrawal AA. 2017. Toward a predictive framework for convergent evolution: integrating natural history, genetic mechanisms, and consequences for the diversity of life. Am. Nat. 190:S1S1–12
    [Google Scholar]
  3. 3.
    Alcalde-Eon C, Rivas-Gonzalo JC, Muñoz O, Escribano-Bailón MT. 2013. Schizanthus grahamii and Schizanthus hookeri. Is there any relationship between their anthocyanin compositions and their different pollination syndromes?. Phytochemistry 85:62–71
    [Google Scholar]
  4. 4.
    Alexander J. 1979. Mediterranean species of Senecio sections Senecio and Delphinifolius. Notes R. Bot. Gard. Edinb. 37:3387–428
    [Google Scholar]
  5. 5.
    Alon U. 2019. An Introduction to Systems Biology: Design Principles of Biological Circuits Boca Raton, FL: CRC Press. , 2nd ed..
  6. 6.
    Arendt J, Reznick D. 2008. Convergence and parallelism reconsidered: What have we learned about the genetics of adaptation?. Trends Ecol. Evol. 23:126–32
    [Google Scholar]
  7. 7.
    Asea AAA, Kaur P, Calderwood SK, eds. 2016. Heat Shock Proteins and Plants Cham, Switz: Springer
  8. 8.
    Barghi N, Hermisson J, Schlötterer C. 2020. Polygenic adaptation: a unifying framework to understand positive selection. Nat. Rev. Genet. 21:12769–81
    [Google Scholar]
  9. 9.
    Bartlett MK, Scoffoni C, Sack L. 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol. Lett. 15:5393–405
    [Google Scholar]
  10. 10.
    Barton NH. 2008. The role of hybridization in evolution. Mol. Ecol. 10:3551–68
    [Google Scholar]
  11. 11.
    Berg JJ, Coop G. 2014. A population genetic signal of polygenic adaptation. PLOS Genet 10:8e1004412
    [Google Scholar]
  12. 12.
    Bergh J, McMurtrie RE, Linder S. 1998. Climatic factors controlling the productivity of Norway spruce: A model-based analysis. For. Ecol. Manag. 110:1–3127–39
    [Google Scholar]
  13. 13.
    Berglund ABN, Dahlgren S, Westerbergh A. 2003. Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol 161:1199–209
    [Google Scholar]
  14. 14.
    Bertel C, Buchner O, Schönswetter P, Frajman B, Neuner G. 2016. Environmentally induced and (epi-)genetically based physiological trait differentiation between Heliosperma pusillum and its polytopically evolved ecologically divergent descendent, H. veselskyi (Caryophyllaceae: Sileneae). Bot. J. Linn. Soc. 182:3658–69
    [Google Scholar]
  15. 15.
    Bertel C, Hülber K, Frajman B, Schönswetter P. 2016. No evidence of intrinsic reproductive isolation between two reciprocally non-monophyletic, ecologically differentiated mountain plants at an early stage of speciation. Evol. Ecol. 30:61031–42
    [Google Scholar]
  16. 16.
    Bertel C, Kaplenig D, Ralser M, Arc E, Kolář F et al. 2022. Parallel differentiation and plastic adjustment of leaf anatomy in alpine Arabidopsis arenosa ecotypes. Plants 11:192626
    [Google Scholar]
  17. 17.
    Bertel C, Rešetnik I, Frajman B, Erschbamer B, Hülber K, Schönswetter P. 2018. Natural selection drives parallel divergence in the mountain plant Heliosperma pusillum s.l. Oikos 127:91355–67
    [Google Scholar]
  18. 18.
    Bertel C, Schönswetter P, Frajman B, Holzinger A, Neuner G. 2017. Leaf anatomy of two reciprocally non-monophyletic mountain plants (Heliosperma spp.): Does heritable adaptation to divergent growing sites accompany the onset of speciation?. Protoplasma 254:31411–20
    [Google Scholar]
  19. 19.
    Bierne N, Gagnaire PA, David P. 2013. The geography of introgression in a patchy environment and the thorn in the side of ecological speciation. Curr. Zool. 59:172–86
    [Google Scholar]
  20. 20.
    Blackman CJ, Brodribb TJ, Jordan GJ. 2010. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol 188:41113–23
    [Google Scholar]
  21. 21.
    Blount ZD, Lenski RE, Losos JB. 2018. Contingency and determinism in evolution: replaying life's tape. Science 362:6415eaam5979
    [Google Scholar]
  22. 22.
    Bohutínská M, Vlček J, Yair S, Laenen B, Konečná V et al. 2021. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. PNAS 118:21e2022713118
    [Google Scholar]
  23. 23.
    Bolnick DI, Barrett RDH, Oke KB, Rennison DJ, Stuart YE. 2018. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49:1303–30
    [Google Scholar]
  24. 24.
    Borchert R. 1994. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:51437–49
    [Google Scholar]
  25. 25.
    Borchsenius F, Lozada T, Knudsen JT. 2016. Reproductive isolation of sympatric forms of the understorey palm Geonoma macrostachys in western Amazonia. Bot. J. Linn. Soc. 182:2398–410
    [Google Scholar]
  26. 26.
    Bowman JL, Smyth DR, Meyerowitz EM. 1989. Genes directing flower development in Arabidopsis. Plant Cell 1:137–52
    [Google Scholar]
  27. 27.
    Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. B Biol. Sci. 276:16631771–76
    [Google Scholar]
  28. 28.
    Boyce CK, Knoll AH. 2002. Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants. Paleobiology 28:170–100
    [Google Scholar]
  29. 29.
    Bradshaw HD, Schemske DW. 2003. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:6963176–78
    [Google Scholar]
  30. 30.
    Brochmann C, Borgen L, Stabbetorp OE. 2000. Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae). Plant Syst. Evol. 220:1–277–92
    [Google Scholar]
  31. 31.
    Brodribb TJ, Feild TS. 2008. Evolutionary significance of a flat-leaved Pinus in Vietnamese rainforest. New Phytol 178:1201–9
    [Google Scholar]
  32. 32.
    Brodribb TJ, Feild TS. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13:2175–83
    [Google Scholar]
  33. 33.
    Brodribb TJ, Feild TS, Jordan GJ. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:41890–98
    [Google Scholar]
  34. 34.
    Brodribb T, Hill RS. 1999. The importance of xylem constraints in the distribution of conifer species. New Phytol 143:2365–72
    [Google Scholar]
  35. 35.
    Brodribb TJ, McAdam SAM, Jordan GJ, Martins SCV. 2014. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. PNAS 111:4014489–93
    [Google Scholar]
  36. 36.
    Bush EJ, Barrett SCH. 1993. Genetics of mine invasions by Deschampsia cespitosa (Poaceae). Can. J. Bot. 71:101336–48
    [Google Scholar]
  37. 37.
    Cai Z, Zhou L, Ren NN, Xu X, Liu R et al. 2019. Parallel speciation of wild rice associated with habitat shifts. Mol. Biol. Evol. 36:5875–89
    [Google Scholar]
  38. 38.
    Casacuberta JM, Jackson S, Panaud O, Purugganan M, Wendel J 2016. Evolution of plant phenotypes, from genomes to traits. G3 6:4775–78
    [Google Scholar]
  39. 39.
    Chapin FS. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11:1233–60
    [Google Scholar]
  40. 40.
    Charlesworth B, Lande R, Slatkin M. 1982. A neo-Darwinian commentary on macroevolution. Evolution 36:3474–98
    [Google Scholar]
  41. 41.
    Chen R, Huangfu L, Lu Y, Fang H, Xu Y et al. 2021. Adaptive innovation of green plants by horizontal gene transfer. Biotechnol. Adv. 46:107671
    [Google Scholar]
  42. 42.
    Chevin LM, Martin G, Lenormand T. 2010. Fisher's model and the genomics of adaptation: restricted pleiotropy, heterogenous mutation, and parallel evolution. Evolution 64:113213–31
    [Google Scholar]
  43. 43.
    Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S et al. 2012. Global convergence in the vulnerability of forests to drought. Nature 491:7426752–55
    [Google Scholar]
  44. 44.
    Christie K, Strauss SY. 2018. Along the speciation continuum: quantifying intrinsic and extrinsic isolating barriers across five million years of evolutionary divergence in California jewelflowers. Evolution 72:51063–79
    [Google Scholar]
  45. 45.
    Christin P-A, Arakaki M, Osborne CP, Edwards EJ. 2015. Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms. Mol. Biol. Evol. 32:4846–58
    [Google Scholar]
  46. 46.
    Christin P-A, Edwards EJ, Besnard G, Boxall SF, Gregory R et al. 2012. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr. Biol. 22:5445–49
    [Google Scholar]
  47. 47.
    Christin P-A, Salamin N, Savolainen V, Duvall MR, Besnard G. 2007. C4 photosynthesis evolved in grasses via parallel adaptive genetic changes. Curr. Biol. 17:141241–47
    [Google Scholar]
  48. 48.
    Clausen J. 1951. Stages in the Evolution of Plant Species Ithaca, NY: Cornell Univ. Press
  49. 49.
    Clements FE, Shelford VE. 1939. Bio-ecology New York: Wiley
  50. 50.
    Coley PD, Bryant JP, Chapin FS. 1985. Resource availability and plant antiherbivore defense. Science 230:4728895–99
    [Google Scholar]
  51. 51.
    Comes HP, Coleman M, Abbott RJ. 2017. Recurrent origin of peripheral, coastal (sub)species in Mediterranean Senecio (Asteraceae). Plant Ecol. Divers. 10:4253–71
    [Google Scholar]
  52. 52.
    Cooper M, Messina CD, Podlich D, Totir LR, Baumgarten A et al. 2014. Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop Pasture Sci 65:4311–36
    [Google Scholar]
  53. 53.
    Crisp MD, Burrows GE, Cook LG, Thornhill AH, Bowman DMJS. 2011. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun. 2:1193
    [Google Scholar]
  54. 54.
    Crisp MD, Cook LG. 2013. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. Syst. 44:303–24
    [Google Scholar]
  55. 55.
    Darwin C 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life London: John Murray
  56. 56.
    Dória LC, Meijs C, Podadera DS, Del Arco M, Smets E et al. 2019. Embolism resistance in stems of herbaceous Brassicaceae and Asteraceae is linked to differences in woodiness and precipitation. Ann. Bot. 124:11–14
    [Google Scholar]
  57. 57.
    Dutkowski GW, Potts BM. 2012. Genetic variation in the susceptibility of Eucalyptus globulus to drought damage. Tree Genet. Genomes 8:4757–73
    [Google Scholar]
  58. 58.
    Ehleringer J, Bjorkman O, Mooney HA. 1976. Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science 192:4237376–77
    [Google Scholar]
  59. 59.
    Ehleringer JR, Monson RK. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24:1411–39
    [Google Scholar]
  60. 60.
    Ellis TW, Hatton TJ. 2008. Relating leaf area index of natural eucalypt vegetation to climate variables in southern Australia. Agric. Water Manag. 95:6743–47
    [Google Scholar]
  61. 61.
    Elmer KR, Meyer A. 2011. Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends Ecol. Evol. 26:6298–306
    [Google Scholar]
  62. 62.
    Fagny M, Austerlitz F. 2021. Polygenic adaptation: integrating population genetics and gene regulatory networks. Trends Genet 37:7631–38
    [Google Scholar]
  63. 63.
    Farquhar GD, Buckley TN, Miller JM 2002. Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fenn 36:3625–37
    [Google Scholar]
  64. 64.
    Forseth IN, Ehleringer JR, Werk KS, Cook CS. 1984. Field water relations of Sonoran desert annuals. Ecology 65:51436–44
    [Google Scholar]
  65. 65.
    Foster SA, McKinnon GE, Steane DA, Potts BM, Vaillancourt RE. 2007. Parallel evolution of dwarf ecotypes in the forest tree Eucalyptus globulus. New Phytol 175:2370–80
    [Google Scholar]
  66. 66.
    Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM. 2011. A map of local adaptation in Arabidopsis thaliana. Science 334:605286–89
    [Google Scholar]
  67. 67.
    Gates DM. 1968. Transpiration and leaf temperature. Annu. Rev. Plant Physiol. 19:211–38
    [Google Scholar]
  68. 68.
    Ge S 2013. J. Syst. Evol. 51:6 Cover
  69. 69.
    Givnish TJ 1978. Ecological aspects of plant morphology: leaf form in relation to environment. Theoretical Plant Morphology R Sattler 83–142. Leiden, Neth: Leiden Univ. Press
    [Google Scholar]
  70. 70.
    Givnish TJ. 1986. Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. On the Economy of Plant Form and Function TJ Givnish 25–55. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  71. 71.
    Givnish TJ. 1987. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106:131–60
    [Google Scholar]
  72. 72.
    Gleason SM, Butler DW, Waryszak P. 2013. Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia. Int. J. Plant Sci. 174:91292–1301
    [Google Scholar]
  73. 73.
    Gompel N, Prud'homme B 2009. The causes of repeated genetic evolution. Dev. Biol. 332:136–47
    [Google Scholar]
  74. 74.
    Gompert Z, Flaxman SM, Feder JL, Chevin L-M, Nosil P. 2022. Laplace's demon in biology: models of evolutionary prediction. Evolution. 76122794–810
  75. 75.
    Gould SJ. 1990. Wonderful Life: The Burgess Shale and the Nature of History New York: NortonAdopted the metaphor “replaying life's tape” to postulate whether evolution follows a deterministic and predictable path.
  76. 76.
    Griffith MM. 1957. Foliar ontogeny in Podocarpus macrophyllus, with special reference to transfusion tissue. Am. J. Bot. 44:8705–15
    [Google Scholar]
  77. 77.
    Grime JP. 1979. Plant Strategies and Vegetation Processes Chichester, UK: Wiley
  78. 78.
    Groen SC, Joly-Lopez Z, Platts AE, Natividad M, Fresquez Z et al. 2022. Evolutionary systems biology reveals patterns of rice adaptation to drought-prone agro-ecosystems. Plant Cell 34:2759–83
    [Google Scholar]
  79. 79.
    Grubb PJ 1986. Sclerophylls, pachyphylls and pycnophylls: the nature and significance of hard leaf surfaces. Insects and the Plant Surface BE Juniper, TRE Southwood 137–50. London: Edward Arnold
    [Google Scholar]
  80. 80.
    Guerrero RF, Hahn MW. 2018. Quantifying the risk of hemiplasy in phylogenetic inference. PNAS 115:5012787–92
    [Google Scholar]
  81. 81.
    Guo J, Liu R, Huang L, Zheng X-M, Liu P-L et al. 2016. Widespread and adaptive alterations in genome-wide gene expression associated with ecological divergence of two Oryza species. Mol. Biol. Evol. 33:162–78
    [Google Scholar]
  82. 82.
    Gurevitch J, Scheiner SM, Fox GA. 2006. The Ecology of Plants Sunderland, MA: Sinauer Associates. , 2nd ed..
  83. 83.
    Gylle AM, Rantamäki S, Ekelund NGA, Tyystjärvi E. 2011. Fluorescence emission spectra of marine and brackish-water ecotypes of Fucus vesiculosus and Fucus radicans (Phaeophyceae) reveal differences in light-harvesting apparatus. J. Phycol. 47:198–105
    [Google Scholar]
  84. 84.
    Haas O, Simpson GG. 1946. Analysis of some phylogenetic terms, with attempts at redefinition. Proc. Am. Philos. Soc. 90:5319–49
    [Google Scholar]
  85. 85.
    Hanikenne M, Nouet C. 2011. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr. Opin. Plant Biol. 14:3252–59
    [Google Scholar]
  86. 86.
    Harmon LJ. 2018. Phylogenetic Comparative Methods: Learning from Trees Scotts Valley, CA: CreateSpace Indep. Publ. Platf.
  87. 87.
    Hetherington AJ, Dolan L. 2018. Stepwise and independent origins of roots among land plants. Nature 561:7722235–38
    [Google Scholar]
  88. 88.
    Hibbins MS, Gibson MJ, Hahn MW 2020. Determining the probability of hemiplasy in the presence of incomplete lineage sorting and introgression. eLife 9:e63753
    [Google Scholar]
  89. 89.
    James ME, Arenas-Castro H, Groh JS, Allen SL, Engelstädter J, Ortiz-Barrientos D. 2021. Highly replicated evolution of parapatric ecotypes. Mol. Biol. Evol. 38:114805–21
    [Google Scholar]
  90. 90.
    James ME, O'Brien NLV, Bukkuri A 2022. Digest: Stable phenotypes, fluid genotypes: how stochasticity impacts network evolution and speciation. Evolution 76:821–23
    [Google Scholar]
  91. 91.
    James ME, Wilkinson MJ, Bernal DM, Liu H, North HL et al. 2021. Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution 75:3115–31
    [Google Scholar]
  92. 92.
    Jordan DN, Smith WK. 1994. Energy balance analysis of night-time leaf temperatures and frost formation in a subalpine environment. Agric. For. Meteorol. 71:3–4359–72
    [Google Scholar]
  93. 93.
    Kaplenig D, Bertel C, Arc E, Villscheider R, Ralser M et al. 2022. Repeated colonization of alpine habitats by Arabidopsis arenosa viewed through freezing resistance and ice management strategies. Plant Biol 24:6939–49
    [Google Scholar]
  94. 94.
    Karagatzides JD, Ellison AM. 2009. Construction costs, payback times, and the leaf economics of carnivorous plants. Am. J. Bot. 96:91612–19
    [Google Scholar]
  95. 95.
    Killingbeck KT. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:61716–27
    [Google Scholar]
  96. 96.
    Kimura M. 1983. The Neutral Theory of Molecular Evolution Cambridge, UK: Cambridge Univ. Press
  97. 97.
    Knotek A, Konečná V, Wos G, Požárová D, Šrámková G et al. 2020. Parallel alpine differentiation in Arabidopsis arenosa. Front. Plant Sci. 11:561526
    [Google Scholar]
  98. 98.
    Koch MA. 2018. The plant model system Arabidopsis set into an evolutionary, systematic and spatio-temporal context. J. Exp. Bot. 70:155–67
    [Google Scholar]
  99. 99.
    Konečná V, Bray S, Vlček J, Bohutínská M, Požárová D et al. 2021. Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nat. Commun. 12:14979
    [Google Scholar]
  100. 100.
    Konečná V, Nowak MD, Kolář F. 2019. Parallel colonization of subalpine habitats in the central European mountains by Primula elatior. Sci. Rep. 9:13294
    [Google Scholar]
  101. 101.
    Konečná V, Šustr M, Požárová D, Čertner M, Krejčová A et al. 2022. Genomic basis and phenotypic manifestation of (non-)parallel serpentine adaptation in Arabidopsis arenosa. Evolution 76:102315–31
    [Google Scholar]
  102. 102.
    Körner C. 1999. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems Berlin: Springer
  103. 103.
    Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM. 2015. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29:5592–99
    [Google Scholar]
  104. 104.
    Kreiner JM, Giacomini DA, Bemm F, Waithaka B, Regalado J et al. 2019. Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus. PNAS 116:4221076–84
    [Google Scholar]
  105. 105.
    Kruckeberg AR. 1951. Intraspecific variability in the response of certain native plant species to serpentine soil. Am. J. Bot. 38:6408–19
    [Google Scholar]
  106. 106.
    Kruckeberg AR. 1957. Variation in fertility of hybrids between isolated populations of the serpentine species, Streptanthus glandulosus Hook. Evolution 11:2185–211
    [Google Scholar]
  107. 107.
    Kyan R, Kimura T, Yamashiro T, Fujii S, Sakaguchi S et al. 2021. Phylogeographic and demographic modeling analyses of the multiple origins of the rheophytic goldenrod Solidago yokusaiana Makino. Heredity 126:5831–45
    [Google Scholar]
  108. 108.
    Lambers H. 2008. Plant Physiological Ecology New York: Springer. , 2nd ed..
  109. 109.
    Lambers H, Cawthray GR, Giavalisco P, Kuo J, Laliberté E et al. 2012. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol 196:41098–108
    [Google Scholar]
  110. 110.
    Lambers H, Raven JA, Shaver GR, Smith SE. 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23:295–103
    [Google Scholar]
  111. 111.
    Larter M, Pfautsch S, Domec J, Trueba S, Nagalingum N, Delzon S. 2017. Aridity drove the evolution of extreme embolism resistance and the radiation of conifer genus Callitris. New Phytol 215:197–112
    [Google Scholar]
  112. 112.
    Láruson ÁJ, Yeaman S, Lotterhos KE. 2020. The importance of genetic redundancy in evolution. Trends Ecol. Evol. 35:809–22Comprehensive review on the different types of genetic redundancy and how they affect the relationship between genotype and phenotype.
    [Google Scholar]
  113. 113.
    Lawson BAJ, Drovandi CC, Cusimano N, Burrage P, Rodriguez B, Burrage K. Unlocking data sets by calibrating populations of models to data density: a study in atrial electrophysiology. Sci. Adv. 4:1e1701676
    [Google Scholar]
  114. 114.
    Lee KM, Coop G. 2017. Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207:1591–619
    [Google Scholar]
  115. 115.
    Lee KM, Coop G. 2019. Population genomics perspectives on convergent adaptation. Philos. Trans. R. Soc. B 374:177720180236
    [Google Scholar]
  116. 116.
    Lenormand T, Chevin LM, Bataillon T. 2016. Parallel evolution: What does it (not) tell us and why is it (still) interesting?. Chance in Evolution Chicago: Univ. Chicago Press
    [Google Scholar]
  117. 117.
    Lenormand T, Roze D, Rousset F 2009. Stochasticity in evolution. Trends Ecol. Evol. 24:3157–65
    [Google Scholar]
  118. 118.
    Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol 190:3709–23
    [Google Scholar]
  119. 119.
    Lens F, Tixier A, Cochard H, Sperry JS, Jansen S, Herbette S. 2013. Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr. Opin. Plant Biol. 16:3287–92
    [Google Scholar]
  120. 120.
    Losos JB 2011. Convergence, adaptation, and constraint. Evolution 65:71827–40Seminal paper describing the relationship between replicated evolution, natural selection, and stochasticity and how this is impacted by evolutionary constraints.
    [Google Scholar]
  121. 121.
    Lowry DB. 2012. Ecotypes and the controversy over stages in the formation of new species. Biol. J. Linn. Soc. 106:2241–57
    [Google Scholar]
  122. 122.
    Lu M, Bond WJ, Sheffer E, Cramer MD, West AG et al. 2022. Biome boundary maintained by intense belowground resource competition in world's thinnest-rooted plant community. PNAS 119:9e2117514119
    [Google Scholar]
  123. 123.
    Mani GS, Clarke BC. 1990. Mutational order: a major stochastic process in evolution. Proc. R. Soc. Lond. B 240:129729–37
    [Google Scholar]
  124. 124.
    Mas A, Lagadeuc Y, Vandenkoornhuyse P. 2020. Reflections on the predictability of evolution: toward a conceptual framework. iScience 23:11101736
    [Google Scholar]
  125. 125.
    Mayer MS, Soltis PS. 1999. Intraspecific phylogeny analysis using ITS sequences: insights from studies of the Streptanthus glandulosus complex (Cruciferae). Syst. Bot. 24:147–61
    [Google Scholar]
  126. 126.
    McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N et al. 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol 178:4719–39
    [Google Scholar]
  127. 127.
    Medina E, Sobrado M, Herrera R. 1978. Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation. Radiat. Environ. Biophys. 15:2131–40
    [Google Scholar]
  128. 128.
    Mehes-Smith M, Nkongolo KK 2015. Physiological and cytological responses of Deschampsia cespitosa and Populus tremuloides to soil metal contamination. Water Air Soil Pollut. 226:4125
    [Google Scholar]
  129. 129.
    Melo MC, Grealy A, Brittain B, Walter GM, Ortiz-Barrientos D. 2014. Strong extrinsic reproductive isolation between parapatric populations of an Australian groundsel. New Phytol 203:1323–34
    [Google Scholar]
  130. 130.
    Melo MC, James ME, Roda F, Bernal-Franco D, Wilkinson MJ et al. 2019. Evidence for mutation-order speciation in an Australian wildflower. bioRxiv 692673. https://doi.org/10.1101/692673
  131. 131.
    Meyer RS, Purugganan MD. 2013. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14:12840–52
    [Google Scholar]
  132. 132.
    Niu Y, Xiang Y. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Front. Plant Sci. 9:915
    [Google Scholar]
  133. 133.
    Noguchi J, De-yuan H. 2004. Multiple origins of the Japanese nocturnal Hemerocallis citrina var. vespertina (Asparagales: Hemerocallidaceae): evidence from noncoding chloroplast DNA sequences and morphology. Int. J. Plant Sci. 165:1219–30
    [Google Scholar]
  134. 134.
    Nosil P, Flaxman SM. 2011. Conditions for mutation-order speciation. Proc. R. Soc. B. 278:1704399–407
    [Google Scholar]
  135. 135.
    Nyberg Berglund A-B, Westerbergh A 2001. Two postglacial immigration lineages of the polyploid Cerastium alpinum (Caryophyllaceae). Hereditas 134:2171–83
    [Google Scholar]
  136. 136.
    Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ et al. 2011. Global patterns of leaf mechanical properties. Ecol. Lett. 14:3301–12
    [Google Scholar]
  137. 137.
    Orgogozo V. 2015. Replaying the tape of life in the twenty-first century. Interface Focus 5:620150057
    [Google Scholar]
  138. 138.
    Orr HA. 2005. The genetic theory of adaptation: a brief history. Nat. Rev. Genet. 6:2119–27
    [Google Scholar]
  139. 139.
    Orr HA. 2005. The probability of parallel evolution. Evolution 59:1216–20
    [Google Scholar]
  140. 140.
    Ostevik KL, Andrew RL, Otto SP, Rieseberg LH. 2016. Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 70:102322–35
    [Google Scholar]
  141. 141.
    Ostevik KL, Moyers BT, Owens GL, Rieseberg LH. 2012. Parallel ecological speciation in plants?. Int. J. Ecol. 2012:939862
    [Google Scholar]
  142. 142.
    Pan Z-J, Chen Y-Y, Du J-S, Chen Y-Y, Chung M-C et al. 2014. Flower development of Phalaenopsis orchid involves functionally divergent SEPALLATA-like genes. New Phytol 202:31024–42
    [Google Scholar]
  143. 143.
    Pereyra RT, Bergström L, Kautsky L, Johannesson K. 2009. Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evol. Biol. 9:170
    [Google Scholar]
  144. 144.
    Pereyra RT, Huenchuñir C, Johansson D, Forslund H, Kautsky L et al. 2013. Parallel speciation or long-distance dispersal? Lessons from seaweeds (Fucus) in the Baltic Sea. J. Evol. Biol. 26:81727–37
    [Google Scholar]
  145. 145.
    Pérez F. 2011. Discordant patterns of morphological and genetic divergence in the closely related species Schizanthus hookeri and S. grahamii (Solanaceae). Plant Syst. Evol. 293:1–4197–205
    [Google Scholar]
  146. 146.
    Pérez-Pereira N, Quesada H, Caballero A. 2017. Can parallel ecological speciation be detected with phylogenetic analyses?. Mol. Phylogenet. Evol. 116:149–56
    [Google Scholar]
  147. 147.
    Poorter H, Jagodzinski AM, Ruiz-Peinado R, Kuyah S, Luo Y et al. 2015. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol 208:3736–49
    [Google Scholar]
  148. 148.
    Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H et al. 2019. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos. Trans. R. Soc. B 374:177720180243
    [Google Scholar]
  149. 149.
    Presgraves DC, Stephan W 2007. Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96. Mol. Biol. Evol. 24:1306–14
    [Google Scholar]
  150. 150.
    Preston J, Sandve S. 2013. Adaptation to seasonality and the winter freeze. Front. Plant Sci. 4:167
    [Google Scholar]
  151. 151.
    Purugganan MD, Jackson SA. 2021. Advancing crop genomics from lab to field. Nat. Genet. 53:5595–601
    [Google Scholar]
  152. 152.
    Qing Z, Liu J, Yi X, Liu X, Hu G et al. 2021. The chromosome-level Hemerocallis citrina Borani genome provides new insights into the rutin biosynthesis and the lack of colchicine. Hortic. Res. 8:189
    [Google Scholar]
  153. 153.
    Rajakaruna N, Baldwin BG, Chan R, Desrochers AM, Bohm BA, Whitton J. 2003. Edaphic races and phylogenetic taxa in the Lasthenia californica complex (Asteraceae: Heliantheae): an hypothesis of parallel evolution. Mol. Ecol. 12:61675–79
    [Google Scholar]
  154. 154.
    Rajakaruna N, Bradfield GE, Bohm BA, Whitton J. 2003. Adaptive differentiation in response to water stress by edaphic races of Lasthenia californica (Asteraceae). Int. J. Plant Sci. 164:3371–76
    [Google Scholar]
  155. 155.
    Rajakaruna N, Siddiqi MY, Whitton J, Bohm BA, Glass ADM. 2003. Differential responses to Na+/K+ and Ca2+/Mg2+ in two edaphic races of the Lasthenia californica (Asteraceae) complex: a case for parallel evolution of physiological traits. New Phytol 157:193–103
    [Google Scholar]
  156. 156.
    Rajakaruna N, Whitton J 2004. Trends in the evolution of edaphic specialists with an example of parallel evolution in the Lasthenia californica complex. Plant Adaptation: Molecular Genetics and Ecology QCB Cronk, J Whitton, RH Ree, IEP Taylor 103–10. Ottawa, Can: NRC Res. Press
    [Google Scholar]
  157. 157.
    Ramsey J, Bradshaw HD, Schemske DW. 2003. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:71520–34
    [Google Scholar]
  158. 158.
    Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102:2275–301
    [Google Scholar]
  159. 159.
    Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C et al. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology 80:61955–69
    [Google Scholar]
  160. 160.
    Reich PB, Walters MB, Ellsworth DS 1997. From tropics to tundra: global convergence in plant functioning. PNAS 94:13730–34First global demonstration that functional traits of species from different biomes lie along a single multivariate dimension of plant function.
    [Google Scholar]
  161. 161.
    Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J et al. 2003. The evolution of plant functional variation: Traits, spectra, and strategies. Int. J. Plant Sci. 164:S3S143–64
    [Google Scholar]
  162. 162.
    Reyes E, Sauquet H, Nadot S. 2016. Perianth symmetry changed at least 199 times in angiosperm evolution. Taxon 65:5945–64
    [Google Scholar]
  163. 163.
    Richards TJ, Ortiz-Barrientos D. 2016. Immigrant inviability produces a strong barrier to gene flow between parapatric ecotypes of Senecio lautus. Evolution 70:61239–48
    [Google Scholar]
  164. 164.
    Ricote N, Bastias CC, Valladares F, Pérez F, Bozinovic F. 2019. Selfing and drought-stress strategies under water deficit for two herbaceous species in the South American Andes. Front. Plant Sci. 10:1595
    [Google Scholar]
  165. 165.
    Roda F, Ambrose L, Walter GM, Liu HL, Schaul A et al. 2013. Genomic evidence for the parallel evolution of coastal forms in the Senecio lautus complex. Mol. Ecol. 22:112941–52
    [Google Scholar]
  166. 166.
    Roda F, Liu H, Wilkinson MJ, Walter GM, James ME et al. 2013. Convergence and divergence during the adaptation to similar environments by an Australian groundsel. Evolution 67:92515–29
    [Google Scholar]
  167. 167.
    Rolhauser AG, Pucheta E. 2017. Directional, stabilizing, and disruptive trait selection as alternative mechanisms for plant community assembly. Ecology 98:3668–77
    [Google Scholar]
  168. 168.
    Roncal J. 2006. Habitat differentiation of sympatric Geonoma macrostachys (Arecaceae) varieties in Peruvian lowland forests. J. Trop. Ecol. 22:4483–86
    [Google Scholar]
  169. 169.
    Roncal J, Borchsenius F, Asmussen-Lange CB, Balslev H 2010. Divergence times in the tribe Geonomateae (Arecaceae) coincide with tertiary geological events. Diversity, Phylogeny, and Evolution in the Monocotyledons O Seberg, G Petersen, AS Barfod, JI Davis 245–65. Aarhus, Den: Aarhus Univ. Press
    [Google Scholar]
  170. 170.
    Rosell JA. 2019. Bark in woody plants: understanding the diversity of a multifunctional structure. Integr. Comp. Biol. 59:3535–47
    [Google Scholar]
  171. 171.
    Rosenblum EB, Parent CE, Brandt EE. 2014. The molecular basis of phenotypic convergence. Annu. Rev. Ecol. Evol. Syst. 45:1203–26Comprehensive review on replicated evolution and the factors that influence the underlying repeated molecular mechanisms within natural systems.
    [Google Scholar]
  172. 172.
    Rundle HD, Nagel LM, Boughman JW, Schluter D. 2000. Natural selection and parallel speciation in sympatric sticklebacks. Science 287:5451306–8
    [Google Scholar]
  173. 173.
    Sack L, Scoffoni C. 2013. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol 198:4983–1000
    [Google Scholar]
  174. 174.
    Sage RF, Christin P-A, Edwards EJ. 2011. The C4 plant lineages of planet Earth. J. Exp. Bot. 62:93155–69
    [Google Scholar]
  175. 175.
    Särkinen T, Bohs L, Olmstead RG, Knapp S. 2013. A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol. Biol. 13:1214
    [Google Scholar]
  176. 176.
    Sauquet H, von Balthazar M, Magallón S, Doyle JA, Endress PK et al. 2017. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8:116047
    [Google Scholar]
  177. 177.
    Schiffman JS, Ralph PL. 2021. System drift and speciation. Evolution 76:236–51
    [Google Scholar]
  178. 178.
    Schimper AFW. 1903. Plant Geography Upon a Physiological Basis Oxford, UK: Clarendon Press
  179. 179.
    Schluter D. 2009. Evidence for ecological speciation and its alternative. Science 323:5915737–41
    [Google Scholar]
  180. 180.
    Schluter D, Conte GL. 2009. Genetics and ecological speciation. PNAS 106:9955–62
    [Google Scholar]
  181. 181.
    Schluter D, Nagel LM 1995. Parallel speciation by natural selection. Am. Nat. 146:2292–301Coined the term parallel speciation, whereby independent lineages repeatedly evolve reproductive isolation, and provided an overview of the criteria to distinguish it from other forms of speciation.
    [Google Scholar]
  182. 182.
    Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles-Wilhelm F. 2007. Biophysical properties and functional significance of stem water storage tissues in neotropical savanna trees. Plant Cell Environ 30:2236–48
    [Google Scholar]
  183. 183.
    Schulze E-D, Beck E, Buchmann N, Clemens S, Müller-Hohenstein K, Scherer-Lorenzen M. 2019. Plant Ecology Berlin, Heidelberg: Springer. , 2nd ed..
  184. 184.
    Sianta SA, Kay KM. 2021. Parallel evolution of phenological isolation across the speciation continuum in serpentine-adapted annual wildflowers. Proc. R. Soc. B 288:20203076
    [Google Scholar]
  185. 185.
    Skelton RP, Anderegg LDL, Diaz J, Kling MM, Papper P et al. 2021. Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. PNAS 118:10e2008987118
    [Google Scholar]
  186. 186.
    Smith JM, Burian R, Kauffman S, Alberch P, Campbell J et al. 1985. Developmental constraints and evolution: a perspective from the Mountain Lake Conference on development and evolution. Q. Rev. Biol. 60:3265–87An in-depth perspective on the sources of developmental constraints and how they impact natural selection and evolution.
    [Google Scholar]
  187. 187.
    Sneddon BV. A biosystematic study of Microseris subgenus Monermos (Compositae: Cichorieae) PhD Diss Victoria Univ. Wellington Wellington, NZ:
    [Google Scholar]
  188. 188.
    Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS. 2007. The ABC model and its applicability to basal angiosperms. Ann. Bot. 100:2155–63
    [Google Scholar]
  189. 189.
    Soltis PS, Soltis DE. 2009. The role of hybridization in plant speciation. Annu. Rev. Plant Biol. 60:1561–88
    [Google Scholar]
  190. 190.
    Specht CD, Howarth DG. 2015. Adaptation in flower form: a comparative evodevo approach. New Phytol 206:174–90
    [Google Scholar]
  191. 191.
    Speed MP, Arbuckle K. 2017. Quantification provides a conceptual basis for convergent evolution. Biol. Rev. 92:2815–29
    [Google Scholar]
  192. 192.
    Stayton CT. 2008. Is convergence surprising? An examination of the frequency of convergence in simulated datasets. J. Theor. Biol. 252:11–14
    [Google Scholar]
  193. 193.
    Stayton CT. 2015. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69:82140–53
    [Google Scholar]
  194. 194.
    Stern DL. 2013. The genetic causes of convergent evolution. Nat. Rev. Genet. 14:11751–64
    [Google Scholar]
  195. 195.
    Stern DL, Orgogozo V. 2008. The loci of evolution: How predictable is genetic evolution?. Evolution 62:92155–77
    [Google Scholar]
  196. 196.
    Stoltzfus A, McCandlish DM. 2017. Mutational biases influence parallel adaptation. Mol. Biol. Evol. 34:92163–72
    [Google Scholar]
  197. 197.
    Storz JF. 2016. Causes of molecular convergence and parallelism in protein evolution. Nat. Rev. Genet. 17:4239–50
    [Google Scholar]
  198. 198.
    Stuart YE. 2019. Divergent uses of “parallel evolution” during the history of The American Naturalist. Am. Nat. 193:111–19
    [Google Scholar]
  199. 199.
    Su C, Chen W-C, Lee A-Y, Chen C-Y, Chang Y-CA et al. 2013. A modified ABCDE model of flowering in orchids based on gene expression profiling studies of the moth orchid Phalaenopsis aphrodite. PLOS ONE 8:11e80462
    [Google Scholar]
  200. 200.
    Sutherland BL, Galloway LF. 2017. Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytol 213:1404–12
    [Google Scholar]
  201. 201.
    Szukala A, Lovegrove-Walsh J, Luqman H, Fior S, Wolfe TM et al. 2022. Polygenic routes lead to parallel altitudinal adaptation in Heliosperma pusillum (Caryophyllaceae). Mol. Ecol. In press. https://doi.org/10.1111/mec.16393
    [Google Scholar]
  202. 202.
    Thorogood CJ, Bauer U, Hiscock SJ. 2018. Convergent and divergent evolution in carnivorous pitcher plant traps. New Phytol 217:31035–41
    [Google Scholar]
  203. 203.
    Todesco M, Owens GL, Bercovich N, Légaré J-S, Soudi S et al. 2020. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584:7822602–7
    [Google Scholar]
  204. 204.
    Tomescu AMF. 2009. Megaphylls, microphylls and the evolution of leaf development. Trends Plant Sci 14:15–12
    [Google Scholar]
  205. 205.
    Trucchi E, Frajman B, Haverkamp THA, Schönswetter P, Paun O. 2017. Genomic analyses suggest parallel ecological divergence in Heliosperma pusillum (Caryophyllaceae). New Phytol 216:1267–78
    [Google Scholar]
  206. 206.
    True JR, Haag ES. 2001. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3:2109–19
    [Google Scholar]
  207. 207.
    Turner IM. 1994. Sclerophylly: primarily protective?. Funct. Ecol. 8:6669–75
    [Google Scholar]
  208. 208.
    Tyree MT, Zimmermann MH. 2002. Xylem Structure and the Ascent of Sap Berlin: Springer. , 2nd ed..
  209. 209.
    Vellend M. 2017. The Theory of Ecological Communities (MPB-57) Princeton, NJ: Princeton Univ. Press
  210. 210.
    Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82:2205–20
    [Google Scholar]
  211. 211.
    Vicca S, Luyssaert S, Peñuelas J, Campioli M, Chapin FS et al. 2012. Fertile forests produce biomass more efficiently. Ecol. Lett. 15:6520–26
    [Google Scholar]
  212. 212.
    Vijverberg K, Lie L, Bachmann K. 2002. Morphological, evolutionary and taxonomic aspects of Australian and New Zealand Microseris (Asteraceae). Aust. J. Bot. 50:1127–43
    [Google Scholar]
  213. 213.
    Vijverberg K, Mes TH, Bachmann K. 1999. Chloroplast DNA evidence for the evolution of Microseris (Asteraceae) in Australia and New Zealand after long-distance dispersal from western North America. Am. J. Bot. 86:101448–63
    [Google Scholar]
  214. 214.
    von Humboldt A, Bonpland A. 1805. Essai sur la géographie des plantes Chicago: Univ. Chicago PressFirst description of the similar vegetation zonation shifts that occur along broad elevational and latitudinal gradients (higher elevations are analogous to higher latitudes).
  215. 215.
    Walsh B, Blows MW. 2009. Abundant genetic variation + strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40:141–59
    [Google Scholar]
  216. 216.
    Walsh B, Lynch M. 2018. Evolution and Selection of Quantitative Traits Oxford, UK: Oxford Univ. Press
  217. 217.
    Walter GM, Wilkinson MJ, James ME, Richards TJ, Aguirre JD, Ortiz-Barrientos D. 2016. Diversification across a heterogeneous landscape. Evolution 70:91979–92
    [Google Scholar]
  218. 218.
    Warming E. 1909. Oecology of Plants Oxford, UK: Clarendon Press218. First comprehensive description of the main world biomes, their plant features, and the role of climate in driving these patterns.
  219. 219.
    Washburn JD, Bird KA, Conant GC, Pires JC. 2016. Convergent evolution and the origin of complex phenotypes in the age of systems biology. Int. J. Plant Sci. 177:4305–18
    [Google Scholar]
  220. 220.
    Wessinger CA, Hileman LC. 2020. Parallelism in flower evolution and development. Annu. Rev. Ecol. Evol. Syst. 51:1387–408
    [Google Scholar]
  221. 221.
    Wessinger CA, Rausher MD. 2015. Ecological transition predictably associated with gene degeneration. Mol. Biol. Evol. 32:2347–54
    [Google Scholar]
  222. 222.
    Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33:1125–59
    [Google Scholar]
  223. 223.
    Whittaker R. 1975. Communities and Ecosystems New York: MacMillan. , 2nd ed..
  224. 224.
    Wickell DA, Li F-W. 2020. On the evolutionary significance of horizontal gene transfers in plants. New Phytol 225:1113–17
    [Google Scholar]
  225. 225.
    Wilkinson MJ, Roda F, Walter GM, James ME, Nipper R et al. 2021. Adaptive divergence in shoot gravitropism creates hybrid sterility in an Australian wildflower. PNAS 118:47e2004901118
    [Google Scholar]
  226. 226.
    Williams RJ, Myers BA, Muller WJ, Duff GA, Eamus D. 1997. Leaf phenology of woody species in a north Australian tropical savanna. Ecology 78:82542–58
    [Google Scholar]
  227. 227.
    Wos G, Arc E, Hülber K, Konečná V, Knotek A et al. 2022. Parallel local adaptation to an alpine environment in Arabidopsis arenosa. J. Ecol. 110:102448–61
    [Google Scholar]
  228. 228.
    Wos G, Bohutínská M, Nosková J, Mandáková T, Kolář F. 2021. Parallelism in gene expression between foothill and alpine ecotypes in Arabidopsis arenosa. Plant J 105:51211–24
    [Google Scholar]
  229. 229.
    Wos G, Choudhury RR, Kolář F, Parisod C. 2021. Transcriptional activity of transposable elements along an elevational gradient in Arabidopsis arenosa. Mob. DNA 12:17
    [Google Scholar]
  230. 230.
    Wos G, Macková L, Kubíková K, Kolář F. 2022. Ploidy and local environment drive intraspecific variation in endoreduplication in Arabidopsis arenosa. Am. J. Bot. 109:2259–71
    [Google Scholar]
  231. 231.
    Wright IJ, Dong N, Maire V, Prentice IC, Westoby M et al. 2017. Global climatic drivers of leaf size. Science 357:6354917–21
    [Google Scholar]
  232. 232.
    Wright IJ, Reich PB, Westoby M. 2003. Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat. 161:198–111
    [Google Scholar]
  233. 233.
    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z et al. 2004. The world-wide leaf economics spectrum. Nature 428:821–27
    [Google Scholar]
  234. 234.
    Wright IJ, Westoby M. 2003. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Funct. Ecol. 17:110–19
    [Google Scholar]
  235. 235.
    Wright IJ, Westoby M, Reich PB. 2002. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf lifespan. J. Ecol. 90:3534–43
    [Google Scholar]
  236. 236.
    Xu S, Wang J, Guo Z, He Z, Shi S. 2020. Genomic convergence in the adaptation to extreme environments. Plant Commun 1:6100117
    [Google Scholar]
  237. 237.
    Xu X, Meng Q-L, Geng M-F, Ren N-N, Zhou L et al. 2020. Divergence in flowering time is a major component contributing to reproductive isolation between two wild rice species (Oryza rufipogon and O. nivara). Sci. China Life Sci. 63:111714–24
    [Google Scholar]
  238. 238.
    Yeaman S. 2015. Local adaptation by alleles of small effect. Am. Nat. 186:S1S74–89
    [Google Scholar]
  239. 239.
    Yeaman S, Gerstein AC, Hodgins KA, Whitlock MC. 2018. Quantifying how constraints limit the diversity of viable routes to adaptation. PLOS Genet 14:10e1007717
    [Google Scholar]
  240. 240.
    Yoichi W, Kawamata I, Matsuki Y, Suyama Y, Uehara K, Ito M. 2018. Phylogeographic analysis suggests two origins for the riparian azalea Rhododendron indicum (L.) Sweet. Heredity 121:6594–604
    [Google Scholar]
  241. 241.
    Yost JM, Barry T, Kay KM, Rajakaruna N. 2012. Edaphic adaptation maintains the coexistence of two cryptic species on serpentine soils. Am. J. Bot. 99:5890–97
    [Google Scholar]
  242. 242.
    Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA et al. 2014. Three keys to the radiation of angiosperms into freezing environments. Nature 506:748689–92
    [Google Scholar]
  243. 243.
    Zhang R, Guo C, Zhang W, Wang P, Li L et al. 2013. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). PNAS 110:135074–79
    [Google Scholar]
  244. 244.
    Zheng X-M, Ge S 2010. Ecological divergence in the presence of gene flow in two closely related Oryza species (Oryza rufipogon and O. nivara). Mol. Ecol. 19:122439–54
    [Google Scholar]
/content/journals/10.1146/annurev-arplant-071221-090809
Loading
/content/journals/10.1146/annurev-arplant-071221-090809
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error