1932

Abstract

Metabolic engineering can be used to modulate endogenous metabolic pathways in plants or introduce new metabolic capabilities in order to increase the production of a desirable compound or reduce the accumulation of an undesirable one. In practice, there are several major challenges that need to be overcome, such as gaining enough knowledge about the endogenous pathways to understand the best intervention points, identifying and sourcing the most suitable metabolic genes, expressing those genes in such a way as to produce a functional enzyme in a heterologous background, and, finally, achieving the accumulation of target compounds without harming the host plant. This article discusses the strategies that have been developed to engineer complex metabolic pathways in plants, focusing on recent technological developments that allow the most significant bottlenecks to be overcome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-050213-035825
2014-04-29
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/arplant/65/1/annurev-arplant-050213-035825.html?itemId=/content/journals/10.1146/annurev-arplant-050213-035825&mimeType=html&fmt=ahah

Literature Cited

  1. Agerbirk N, Olsen CE. 1.  2012. Glucosinolate structures in evolution. Phytochemistry 77:16–45 [Google Scholar]
  2. Ahmed F, Khan MR, Banu CP, Qazi MR, Akhtaruzzaman M. 2.  2008. The coexistence of other micronutrient deficiencies in anaemic adolescent schoolgirls in rural Bangladesh. Eur. J. Clin. Nutr. 62:365–72 [Google Scholar]
  3. Akhtar TA, Orsomando G, Mehrshahi P, Lara-Nunez A, Bennett MJ. 3.  et al. 2010. A central role for γ-glutamyl hydrolases in plant folate homeostasis. Plant J. 64:256–66 [Google Scholar]
  4. Allen DK, Libourel IGL, Shachar-Hill Y. 4.  2009. Metabolic flux analysis in plants: coping with complexity. Plant Cell Environ. 32:1241–57 [Google Scholar]
  5. Alves R, Vilaprinyo E, Hernández-Bermejo B, Sorribas A. 5.  2008. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways. Biotechnol. Genet. Eng. Rev. 25:1–40 [Google Scholar]
  6. Andrianantoandro E, Basu S, Karig DK, Weiss R. 6.  2006. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2:2006.0028 [Google Scholar]
  7. Bai C, Twyman R, Farré G, Sanahuja G, Christou P. 7.  et al. 2011. A golden era—pro-vitamin A enhancement in diverse crops. In Vitro Cell. Dev. Biol. Plant 47:205–21 [Google Scholar]
  8. Bak S, Olsen CE, Peteresen BL, Møller BL, Halkier BA. 8.  1999. Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant J. 20:663–71 [Google Scholar]
  9. Baldwin I. 9.  2010. Plant volatiles. Curr. Biol. 20:R392–97 [Google Scholar]
  10. Baskar V, Gututani MA, Yu JW, Park SW. 10.  2012. Engineering glucosinolates in plants: current knowledge and potential uses. Appl. Biochem. Biotechnol. 168:1694–717 [Google Scholar]
  11. Bassard JE, Richert L, Geerinck J, Renault H, Duval F. 11.  et al. 2012. Protein-protein and protein-membrane associations in the lignin pathway. Plant Cell 24:4465–82 [Google Scholar]
  12. Bekaert S, Storozhenko S, Mehrshahi P, Bennett M, Lambert W. 12.  et al. 2008. Folate biofortification in food plants. Trends Plant Sci. 13:28–35 [Google Scholar]
  13. Besumbes O, Sauret-Gueto S, Phillips MA, Imperial S, Rodríguez-Concepción M. 13.  et al. 2004. Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol. Bioeng. 88:168–75 [Google Scholar]
  14. Birchler JA, Yu W, Han F. 14.  2008. Plant engineered minichromosomes and artificial chromosome platforms. Cytogenet. Genome Res. 120:228–32 [Google Scholar]
  15. Blancquaert D, Storozhenko S, Loizeau K, De Steur H, De Brouwer V. 15.  et al. 2010. Folates and folic acid: from fundamental research toward sustainable health. Crit. Rev. Plant Sci. 29:14–35 [Google Scholar]
  16. Blancquaert D, Storozhenko S, Van Daele J, Stove C, Visser RGF. 16.  et al. 2013. Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers and Arabidopsis thaliana plants with folate. J. Exp. Bot. 64:3899–909 [Google Scholar]
  17. Blancquaert D, Van Daele J, Storozhenko S, Stove C, Lambert W. 17.  et al. 2013. Rice folate enhancement through metabolic engineering impacts rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Mol. Biol. 83:329–49 [Google Scholar]
  18. Bock R. 18.  2013. Strategies for metabolic pathway engineering with multiple transgenes. Plant Mol. Biol. 83:21–31 [Google Scholar]
  19. Bulley S, Wright M, Rommens C, Yan H, Rassam M. 19.  et al. 2012. Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnol. J. 10:390–97 [Google Scholar]
  20. Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA. 20.  et al. 1997. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 11:1071–78 [Google Scholar]
  21. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ. 21.  2003. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat. Biotechnol. 21:1082–87 [Google Scholar]
  22. Capell T, Christou P. 22.  2004. Progress in plant metabolic engineering. Curr. Opin. Biotechnol. 15:148–54 [Google Scholar]
  23. Carlson SR, Ridgers GW, Zieler H, Mach JM, Luo S. 23.  et al. 2007. Meiotic transmission of an in vitro–assembled autonomous maize minichromosome. PLoS Genet. 3:e179 [Google Scholar]
  24. Caspi R, Dreher K, Karp PD. 24.  2013. The challenge of constructing, classifying and representing metabolic pathways. FEMS Microbiol. Lett. 345:85–93 [Google Scholar]
  25. Century K, Reuber TL, Ratcliffe OJ. 25.  2008. Regulating the regulations: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol. 147:20–29 [Google Scholar]
  26. Chen DF, Zhang M, Wang YQ, Chen XW. 26.  2012. Expression of γ-tocopherol methyltransferase gene from Brassica napus increased α-tocopherol content in soybean seed. Biol. Plant. 56:131–34 [Google Scholar]
  27. Chen QJ, Zhou HM, Chen J, Wang XC. 27.  2006. A Gateway-based platform for multigene plant transformation. Plant Mol. Biol. 62:927–36 [Google Scholar]
  28. Chen SX, Glawischnig E, Jørgensen K, Naur P, Jorgensen B. 28.  et al. 2003. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–37 [Google Scholar]
  29. Chew BP, Park JS. 29.  2004. Carotenoid action on the immune response. J. Nutr. 134:257S–61S [Google Scholar]
  30. Cho DH, Jung YJ, Choi CS, Lee HJ, Park JH. 30.  et al. 2008. Astaxanthin production in transgenic Arabidopsis with chyB gene encoding β-carotene hydroxylase. J. Plant Biol. 51:58–63 [Google Scholar]
  31. Choi SK, Nishida Y, Matsuda S, Adachi K, Kasai H. 31.  et al. 2005. Characterization of β-carotene ketolases, CrtW, from marine bacteria by complementation analysis in Escherichia coli. Mar. Biotechnol. 7:515–22 [Google Scholar]
  32. Cunningham FX Jr, Gantt E. 32.  2011. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell 23:3055–69 [Google Scholar]
  33. D'Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A. 33.  et al. 2004. Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Sci. 166:207–14 [Google Scholar]
  34. D'Hont A, Denoeud F, Aury JM, Carreel F, Garsmeur O. 34.  et al. 2012. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–17 [Google Scholar]
  35. Datta K, Baisakh N, Thet KM, Tu J, Datta S. 35.  2002. Pyramiding transgenes for multiple resistance in rice against bacterial blight, yellow stem borer and sheath blight. Theor. Appl. Genet. 106:1–8 [Google Scholar]
  36. DellaPenna D, Pogson BJ. 36.  2006. Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57:711–38 [Google Scholar]
  37. Díaz de la Garza RI, Gregory JF, Hanson AD. 37.  2007. Folate biofortification of tomato fruit. Proc. Natl. Acad. Sci. USA 104:4218–22 [Google Scholar]
  38. Díaz de la Garza RI, Quinlivan EP, Klaus SM, Basset GJ, Gregory JF. 38.  et al. 2004. Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc. Natl. Acad. Sci. USA 101:13720–25 [Google Scholar]
  39. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P. 39.  et al. 2007. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial minipathway. PLoS ONE 2:e350 [Google Scholar]
  40. Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F. 40.  et al. 2006. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene ϵ-cyclase. BMC Plant Biol. 6:13 [Google Scholar]
  41. Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D. 41.  et al. 2007. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers. BMC Plant Biol. 7:11 [Google Scholar]
  42. Fahey JW, Zalcmann AT, Talalay P. 42.  2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51 [Google Scholar]
  43. Farré G, Bai C, Twyman RM, Capell T, Christou P. 43.  et al. 2011. Nutritious crops producing multiple carotenoids—a metabolic balancing act. Trends Plant Sci. 16:532–40 [Google Scholar]
  44. Farré G, Rivera SM, Alves R, Vilaprinyo E, Sorribas A. 44.  et al. 2013. Targeted transcriptomic and metabolic profiling reveals temporal bottlenecks in the maize carotenoid pathway that can be addressed by multigene engineering. Plant J. 75:441–55 [Google Scholar]
  45. Farré G, Sanahuja G, Naqvi S, Bai C, Capell T. 45.  et al. 2010. Travel advice on the road to carotenoids in plants. Plant Sci. 179:28–48 [Google Scholar]
  46. Farré G, Sudhakar D, Naqvi S, Sandmann G, Christou P. 46.  et al. 2012. Transgenic rice grains expressing a heterologous ρ-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the γ to the α isoform without increasing absolute tocopherol levels.. Transgenic Res. 21:1093–97 [Google Scholar]
  47. Fitzpatrick TB, Basset GJC, Borel P, Carrari F, DellaPenna D. 47.  et al. 2012. Vitamin deficiencies in humans: Can plant science help?. Plant Cell 24:395–414 [Google Scholar]
  48. Foyer CH, Noctor G. 48.  2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155:2–18 [Google Scholar]
  49. Fraser PD, Bramley PM. 49.  2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43:228–65 [Google Scholar]
  50. Fraser PD, Enfissi EM, Bramley PM. 50.  2009. Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Arch. Biochem. Biophys. 483:196–204 [Google Scholar]
  51. Fraser PD, Miura Y, Misawa N. 51.  1997. In vitro characterization of astaxanthin biosynthetic enzymes. J. Biol. Chem. 272:6128–35 [Google Scholar]
  52. Fraser PD, Römer S, Shipton CA, Mills PB, Kiano JW. 52.  et al. 2002. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci. USA 99:1092–97 [Google Scholar]
  53. Fraser PD, Shimada H, Misawa N. 53.  1998. Enzymic confirmation of reactions involved in routes to astaxanthin formation elucidated using a direct substrate in vitro assay. Eur. J. Biochem. 252:229–36 [Google Scholar]
  54. Fray FG, Wallace A, Fraser PD, Valero D, Hedden P. 54.  et al. 1995. Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellins pathway. Plant J. 8:693–701 [Google Scholar]
  55. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H. 55.  et al. 2009. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J. Exp. Bot. 60:1319–32 [Google Scholar]
  56. Garratt LC, Ortori CA, Tucker GA, Sablitzky F, Bennet MJ. 56.  et al. 2005. Comprehensive metabolic profiling of mono- and polyglutamated folates and their precursors in plant and animal tissue using liquid chromatography/negative ion electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19:2390–98 [Google Scholar]
  57. Gerjets T, Sandmann G. 57.  2006. Ketocarotenoid formation in transgenic potato. J. Exp. Bot. 57:3639–45 [Google Scholar]
  58. Gerjets T, Sandmann M, Zhu C, Sandmann G. 58.  2007. Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species. Biotechnol. J. 2:1263–69 [Google Scholar]
  59. Giovannucci E. 59.  2002. Lycopene and prostate cancer risk: methodological considerations in the epidemiologic literature. Pure Appl. Chem. 74:1427–34 [Google Scholar]
  60. Gómez-Galera S, Rojas E, Sudhakar D, Zhu C, Pelacho AM. 60.  et al. 2010. Critical evaluation of strategies for mineral fortification of staple crops. Transgenic Res. 19:165–80 [Google Scholar]
  61. Gustafsson C, Govindarajan S, Minshull J. 61.  2004. Codon bias and heterologous protein expression. Trends Biotechnol 22:346–53 [Google Scholar]
  62. Halpin C. 62.  2005. Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol. J. 3:141–55 [Google Scholar]
  63. Halpin C, Barakate A, Askari BM, Abbott JC, Ryan MD. 63.  2001. Enabling technologies for manipulating multiple genes on complex pathways. Plant Mol. Biol. 47:295–310 [Google Scholar]
  64. Hamilton CM, Frary A, Lewis C, Tanksley SD. 64.  1996. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93:9975–79 [Google Scholar]
  65. Harker M, Hirschberg J. 65.  1997. Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for β-C-4-oxygenase, crtO. FEBS Lett. 404:129–34 [Google Scholar]
  66. Hasunuma T, Miyazawa S, Yoshimura S, Shinzaki Y, Tomizawa K. 66.  et al. 2008. Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering. Plant J. 55:857–68 [Google Scholar]
  67. Heiling S, Schuman MC, Schoettner M, Mukerjee P, Berger B. 67.  et al. 2010. Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell. 22:273–92 [Google Scholar]
  68. Hettiarachchi M, Liyanage C. 68.  2012. Coexisting micronutrient deficiencies among Sri Lankan pre-school children: a community-based study. Matern. Child Nutr. 8:259–66 [Google Scholar]
  69. Hossain T, Rosenberg I, Selhub J, Kishore G, Beachy R. 69.  et al. 2004. Enhancement of folate in plants through metabolic engineering. Proc. Natl. Acad. Sci. USA 101:5158–63 [Google Scholar]
  70. Huang J, Zhong Y, Liu J, Sandmann G, Chen F. 70.  2013. Metabolic engineering of tomato for high-yield production of astaxanthin. Metab. Eng. 17:59–67 [Google Scholar]
  71. Huang J, Zhong Y, Sandmann G, Liu J, Chen F. 71.  2012. Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236:691–99 [Google Scholar]
  72. Inagaki YS, Etherington G, Geisler K, Field B, Dokarry M. 72.  et al. 2011. Investigation of the potential for triterpene synthesis in rice through genome mining and metabolic engineering. New Phytol. 191:432–48 [Google Scholar]
  73. 73. Int. Rice Genome Seq. Proj 2005. The map-based sequence of the rice genome. Nature 436:793–800 [Google Scholar]
  74. Ishikawa T, Dowdle J, Smirnoff N. 74.  2006. Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol. Plant. 126:343–55 [Google Scholar]
  75. Jain AK, Nessler CL. 75.  2000. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol. Breed. 6:73–78 [Google Scholar]
  76. Jayaraj J, Devlin R, Punja Z. 76.  2008. Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res. 17:489–501 [Google Scholar]
  77. Jobling SA, Westcott RJ, Tayal A, Jeffcoat R, Schwall GP. 77.  2002. Production of a freeze–thaw-stable potato starch by antisense inhibition of three starch synthase genes. Nat. Biotechnol. 20:295–99 [Google Scholar]
  78. Jørgensen K, Rasmussen AV, Morant M, Nielsen AH, Bjarnholt N. 78.  et al. 2005. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8:280–91 [Google Scholar]
  79. Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK. 79.  et al. 2005. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab. Eng. 7:384–400 [Google Scholar]
  80. Keum YS, Jeong WS, Kong ANT. 80.  2004. Chemoprevention by isothiocyanates and their underlying molecular signaling mechanisms. Mutat. Res. 555:191–202 [Google Scholar]
  81. Kliebenstein DJ, Kroymann J, Mitchell-Olds T. 81.  2005. The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr. Opin. Plant Biol. 8:264–71 [Google Scholar]
  82. Kristensen C, Morant M, Olsen CE, Ekstrom CT, Galbraith DW. 82.  et al. 2005. Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl. Acad. Sci. USA 102:1779–84 [Google Scholar]
  83. Kryvych S, Kleessen S, Ebert B, Kersten B, Fisahn J. 83.  2011. Proteomics—the key to understanding systems biology of Arabidopsis trichomes. Phytochemistry 72:1061–70 [Google Scholar]
  84. Lander RL, Enkhjargal T, Batjargal J, Bailey KB, Diouf S. 84.  et al. 2008. Multiple micronutrient deficiencies persist during early childhood in Mongolia. Asia Pac. J. Clin. Nutr. 17:429–40 [Google Scholar]
  85. Landrum JT, Bone AR. 85.  2001. Lutein, zeaxanthin, and the macular pigment. Arch. Biochem. Biophys. 385:28–40 [Google Scholar]
  86. Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J. 86.  et al. 1999. Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol. 119:153–63 [Google Scholar]
  87. Lee BK, Kim SL, Kim KH, Yu SH, Lee SC. 87.  et al. 2008. Seed specific expression of perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic perilla (Perilla frutescens). Plant Cell Tiss. Organ Cult. 92:47–54 [Google Scholar]
  88. Lee K, Lee SM, Park SR, Jung J, Moon JK. 88.  et al. 2007. Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.). Mol. Cells 24:301–6 [Google Scholar]
  89. Lee K, Yi BY, Kim KH, Kim JB, Suh SC. 89.  et al. 2011. Development of efficient transformation protocol for soybean (Glycine max L.) and characterization of transgene expression after Agrobacterium-mediated gene transfer. J. Korean Soc. Appl. Biol. Chem. 54:37–45 [Google Scholar]
  90. Leech MJ, May K, Hallard D, Verpoorte R, De Luca V. 90.  et al. 1998. Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation. Plant Mol. Biol. 38:765–74 [Google Scholar]
  91. Li Y, Wang G, Hou R, Zhou Y, Gong R. 91.  et al. 2011. Engineering tocopherol biosynthetic pathway in lettuce. Biol. Plant. 55:453–60 [Google Scholar]
  92. Liu YG, Shirano Y, Fukaki H, Yanai Y, Tasaka M. 92.  et al. 1999. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl. Acad. Sci. USA 96:6535–40 [Google Scholar]
  93. Lopez AB, Van Eck J, Conlin BJ, Paolillo DJ, O'Neill J. 93.  et al. 2008. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot. 59:213–23 [Google Scholar]
  94. Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM. 94.  et al. 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–605 [Google Scholar]
  95. Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R. 95.  2013. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc. Natl. Acad. Sci. USA 110:E623–32 [Google Scholar]
  96. Luo J, Fuell C, Parr A, Hill L, Bailey P. 96.  et al. 2009. A novel polyamine acyltransferase responsible for the accumulation of spermidine conjugates in Arabidopsis seed. Plant Cell 21:318–33 [Google Scholar]
  97. Ma JKC, Hiatt A, Hein M, Vine ND, Wang F. 97.  et al. 1995. Generation and assembly of secretory antibodies in plants. Science 268:716–19 [Google Scholar]
  98. Mann V, Harker M, Pecker I, Hirschberg J. 98.  2000. Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 18:888–92 [Google Scholar]
  99. Menon KC, Skeaff SA, Thomson CD, Gray AR, Ferguson EL. 99.  et al. 2011. Concurrent micronutrient deficiencies are prevalent in nonpregnant rural and tribal women from central India. Nutrition 27:496–502 [Google Scholar]
  100. Miralpeix B, Rischer H, Häkkinen ST, Ritala A, Seppänen-Laakso T. 100.  et al. 2013. Metabolic engineering of plant secondary products: which way forward?. Curr. Pharm. Des. 19:5622–39 [Google Scholar]
  101. Misawa N. 101.  2009. Pathway engineering of plants towards astaxanthin production. Plant Biotechnol. 26:93–99 [Google Scholar]
  102. Misawa N, Satomi Y, Kondo K, Yokoyama A, Kajiwara S. 102.  et al. 1995. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J. Bacteriol. 177:6575–84 [Google Scholar]
  103. Misawa N, Shimada H. 103.  1998. Metabolic engineering for the production of carotenoids in non-carotenogenic bacteria and yeasts. J. Biotechnol. 59:169–81 [Google Scholar]
  104. Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT. 104.  2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 80:967–84 [Google Scholar]
  105. Morris WL, Ducreux LJM, Fraser PD, Millam S, Taylor MA. 105.  2006. Engineering ketocarotenoid biosynthesis in potato tubers. Metab. Eng. 8:253–63 [Google Scholar]
  106. Mugford ST, Louveau T, Melton R, Qi X, Bakht S. 106.  et al. 2013. Modularity of plant metabolic gene clusters: a trio of linked genes that are collectively required for acylation of triterpenes in oat. Plan Cell 25:1078–92 [Google Scholar]
  107. Mullen J, Adam G, Blowers A, Earle E. 107.  1998. Biolistic transfer of large DNA fragments to tobacco cells using YACs retrofitted for plant transformation. Mol. Breed. 4:449–57 [Google Scholar]
  108. Naqvi S, Farré G, Sanahuja G, Capell T, Zhu C. 108.  et al. 2010. When more is better: multigene engineering in plants. Trends Plant Sci. 15:48–56 [Google Scholar]
  109. Naqvi S, Farré G, Zhu C, Sandmann G, Capell T. 109.  et al. 2011. Simultaneous expression of Arabidopsis ρ-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content. Transgenic Res. 20:177–81 [Google Scholar]
  110. Naqvi S, Zhu C, Farré G, Ramessara K, Bassie L. 110.  et al. 2009. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA 106:7762–67 [Google Scholar]
  111. Naqvi S, Zhu C, Farré G, Sandmann G, Capell T. 111.  et al. 2011. Synergistic metabolism in hybrid corn indicates bottlenecks in the carotenoid pathway and leads to the accumulation of extraordinary levels of the nutritionally important carotenoid zeaxanthin. Plant Biotechnol. J. 9:384–93 [Google Scholar]
  112. Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H. 112.  et al. 2003. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72 [Google Scholar]
  113. Niki E, Traber MG. 113.  2012. A history of vitamin E. Ann. Nutr. Metab. 61:207–12 [Google Scholar]
  114. Nunes ACS, Kalkmann DC, Aragão FJL. 114.  2009. Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Res. 18:661–67 [Google Scholar]
  115. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ. 115.  et al. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23:482–87 [Google Scholar]
  116. Peremarti A, Twyman RM, Gómez-Galera S, Naqvi S, Farré G. 116.  et al. 2010. Promoter diversity in multigene transformation. Plant Mol. Biol. 73:363–78 [Google Scholar]
  117. Pérez-Massot E, Banakar R, Gómez-Galera S, Zorrilla-López U, Sanahuja G. 117.  et al. 2013. The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes Nutr. 8:29–41 [Google Scholar]
  118. Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D. 118.  1996. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–39 [Google Scholar]
  119. 119. Potato Genome Seq. Consort 2011. Genome sequence and analysis of the tuber crop potato. Nature 475:189–95 [Google Scholar]
  120. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O. 120.  et al. 2004. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat. Biotechnol. 22:739–45 [Google Scholar]
  121. Qin A, Shi Q, Yu X. 121.  2011. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol. Biol. Rep. 38:1557–66 [Google Scholar]
  122. Ralley L, Enfissi EMA, Misawa N, Schuch W, Bramley P, Fraser PD. 122.  2004. Metabolic engineering of ketocarotenoid formation in higher plants. Plant J. 39:477–86 [Google Scholar]
  123. Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y. 123.  et al. 2001. Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98:15360–65 [Google Scholar]
  124. Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK. 124.  2003. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab. Eng. 5:255–63 [Google Scholar]
  125. Rébeillé F, Ravanel S, Douce R, Storozhenko S, Van Der Straeten D. 125.  2006. Folates in plants: biosynthesis, distribution, and enhancement. Physiol. Plant. 126:330–42 [Google Scholar]
  126. Rischer H, Häkkinen ST, Ritala A, Seppänen-Laakso T, Miralpeix B. 126.  et al. 2013. Plant cells as pharmaceutical factories. Curr. Pharm. Des 19:5640–60 [Google Scholar]
  127. Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N. 127.  et al. 2000. Elevation of the provitamin A content of transgenic tomato plants. Nat. Biotechnol. 18:666–69 [Google Scholar]
  128. Römer S, Lübeck J, Kauder F, Steiger S, Adomat C. 128.  et al. 2002. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation. Metab. Eng. 4:263–72 [Google Scholar]
  129. Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C. 129.  et al. 2000. Metabolic engineering of β-carotene and lycopene content in tomato fruit. Plant J. 24:413–19 [Google Scholar]
  130. Rose RC, Bode AM. 130.  1993. Biology of free-radical scavengers—an evaluation of ascorbate. FASEB J. 7:1135–42 [Google Scholar]
  131. Sanahuja G, Farré G, Bassie L, Zhu C, Christou P, Capell T. 131.  2013. Ascorbic acid synthesis and metabolism in maize are subject to complex and genotype dependent feedback regulation during endosperm development. Biotechnol. J. 8:1221–30 [Google Scholar]
  132. Sanahuja G, Farré G, Berman J, Zorrilla-López U, Twyman RT. 132.  et al. 2013. A question of balance—achieving appropriate nutrient levels in biofortified staple crops. Nutr. Res. Rev. 26:235–45 [Google Scholar]
  133. Sandmann G. 133.  2002. Combinatorial biosynthesis of carotenoids in a heterologous host: A powerful approach for the biosynthesis of novel structures. ChemBioChem 3:629–35 [Google Scholar]
  134. Schaub P, Al-Babili S, Drake R, Beyer P. 134.  2005. Why is Golden Rice golden (yellow) instead of red?. Plant Physiol. 138:441–50 [Google Scholar]
  135. Schauer N, Fernie AR. 135.  2006. Plant metabolomics: towards biological function and mechanism. Trends Plant Sc. 11:508–16 [Google Scholar]
  136. Schnable PS, Ware D, Fulton RS, Stein JC, Wei FS. 136.  et al. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–15 [Google Scholar]
  137. Scott J, Rébeillé F, Fletcher J. 137.  2000. Folic acid and folate: the feasibility for nutritional enhancement in plant foods. J. Sci. Food Agric. 80:795–824 [Google Scholar]
  138. Seo YS, Kim SJ, Harn CH, Kim WT. 138.  2011. Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. Phytochemistry 72:321–29 [Google Scholar]
  139. Seybold A, Goodwin TW. 139.  1959. Occurrence of astaxanthin in the flower petals of Adonis annua L. Nature 184:1714–15 [Google Scholar]
  140. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY. 140.  1999. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 20:401–12 [Google Scholar]
  141. Shintani D, DellaPenna D. 141.  1998. Elevating the vitamin E content of plants though metabolic engineering. Science 282:2098–100 [Google Scholar]
  142. Soll J, Schultz G. 142.  1980. 2-Methyl-6-phytylquinol and 2,3-dimethyl-5-phytylquinol as precursors of tocopherol synthesis in spinach chloroplasts. Phytochemistry 19:215–18 [Google Scholar]
  143. Sonderby IE, Geu-Flores F, Halkier BA. 143.  2010. Biosynthesis of glucosinolates—gene discovery and beyond. Trends Plant Sci. 15:283–90 [Google Scholar]
  144. Stalberg K, Lindgren O, Ek B, Höglund AS. 144.  2003. Synthesis of ketocarotenoids in the seeds of Arabidopsis thaliana. Plant J. 36:771–79 [Google Scholar]
  145. Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D. 145.  et al. 2007. Folate fortification of rice by metabolic engineering. Nat. Biotechnol. 25:1277–79 [Google Scholar]
  146. Storozhenko S, Ravanel S, Zhang G-F, Rébeillé F, Lambert W. 146.  et al. 2005. Folate enhancement in staple crops by metabolic engineering. Trends Food Sci. Technol. 16:271–81 [Google Scholar]
  147. Suzuki S, Nishihara M, Nakatsuka T, Misawa N, Ogiwara I, Yamamura S. 147.  2007. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep. 26:951–59 [Google Scholar]
  148. Tavva VS, Kim YH, Kagan IA, Dinkins RD, Kim KH. 148.  et al. 2007. Increased α-tocopherol content in soybean seed overexpressing the Perilla frutescens γ-tocopherol methyltransferase gene. Plant Cell Rep. 26:61–70 [Google Scholar]
  149. Tissier A. 149.  2012. Glandular trichomes: What comes after expressed sequence tags?. Plant J. 70:51–68 [Google Scholar]
  150. Twyman RM, Kohli A, Stoger E, Christou P. 150.  2002. Foreign DNA: integration and expression in transgenic plants. Genetic Engineering: Principles and Methods 24 JK Setlow 107–36 New York: Kluwer/Plenum [Google Scholar]
  151. Valpuesta V, Botella MA. 151.  2004. Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci. 9:573–77 [Google Scholar]
  152. Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK. 152.  et al. 2003. Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–19 [Google Scholar]
  153. Vega JM, Yu W, Han F, Kato A, Peters EM. 153.  et al. 2008. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors. Plant Mol. Biol. 66:587–98 [Google Scholar]
  154. Verpoorte R, van der Heijden R, Memelink J. 154.  2000. Engineering the plant cell factory for secondary metabolite production. Transgenic Res. 9:323–43 [Google Scholar]
  155. Visser H, van Ooyen AJ, Verdoes JC. 155.  2003. Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res. 4:221–31 [Google Scholar]
  156. Wada N, Kajiyama S, Akiyama Y, Kawakami S, No D. 156.  et al. 2009. Bioactive beads-mediated transformation of rice with large DNA fragments containing Aegilops tauschii genes. Plant Cell Rep. 28:759–68 [Google Scholar]
  157. Walker K, Croteau R. 157.  2001. Taxol biosynthetic genes. Phytochemistry 58:1–7 [Google Scholar]
  158. Waller JC, Akhtar TA, Lara-Nunez L, Gregory JF, McQuinn RP. 158.  et al. 2010. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol. Plant 3:66–77 [Google Scholar]
  159. Weaver LM, Herrmann KM. 159.  1997. Dynamics of the shikimate pathway in plants. Trends Plants Sci. 2:346–51 [Google Scholar]
  160. Wheeler G, Jones M, Smirnoff N. 160.  1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–69 [Google Scholar]
  161. Wittstock U, Halkier BA. 161.  2000. Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of l-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J. Biol. Chem 275:14659–66 [Google Scholar]
  162. Wu Y, Zhou K, Toyomasu T, Sugawara C, Oku M. 162.  et al. 2012. Functional characterization of wheat copalyl diphosphate synthases sheds light on the early evolution of labdane-related diterpenoid metabolism in the cereals. Phytochemistry 84:40–46 [Google Scholar]
  163. Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M. 163.  et al. 2013. Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res. 22:391–402 [Google Scholar]
  164. Yang L, Suzuki K, Hirose S, Wasaka Y, Takaiwa F. 164.  2007. Development of transgenic rice seed accumulating a major Japanese cedar pollen allergen (Cry j 1) structurally disrupted for oral immunotherapy. Plant Biotechnol. J. 5:815–26 [Google Scholar]
  165. Yang W, Cahoon RE, Hunter SC, Zhang C, Han J. 165.  et al. 2011. Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J. 65:206–17 [Google Scholar]
  166. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P. 166.  et al. 2000. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–5 [Google Scholar]
  167. Yoneyama T, Hatakeyama K. 167.  1998. Decameric GTP cyclohydrolase I forms complexes with two pentameric GTPCHI feedback regulatory proteins in the presence of phenylalanine or of a combination of BH 4 and GTP. J. Biol. Chem. 273:20102–8 [Google Scholar]
  168. Yu B, Lydiate DJ, Young LW, Schäfer UA, Hannoufa A. 168.  2008. Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res. 17:573–85 [Google Scholar]
  169. Yu W, Han F, Gao Z, Vega JM, Birchler JA. 169.  2007. Construction and behavior of engineered minichromosomes in maize. Proc. Natl. Acad. Sci. USA 104:8924–29 [Google Scholar]
  170. Yu W, Lamb JC, Han F, Birchler JA. 170.  2006. Telomere-mediated chromosomal truncation in maize. Proc. Natl. Acad. Sci. USA 103:17331–36 [Google Scholar]
  171. Yusuf MA, Sarin NB. 171.  2007. Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res. 16:109–13 [Google Scholar]
  172. Zhang GY, Liu RR, Xu G, Zhang P, Li Y. 172.  et al. 2013. Increased α-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis γ-tocopherol methyltransferase. Transgenic Res. 22:89–99 [Google Scholar]
  173. Zhong YJ, Huang JC, Liu J, Li Y, Jiang Y. 173.  et al. 2011. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J. Exp. Bot. 62:3659–69 [Google Scholar]
  174. Zhu C, Gerjets T, Sandmann G. 174.  2007. Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene. Transgenic Res. 16:813–21 [Google Scholar]
  175. Zhu C, Naqvi S, Breitenbach J, Sandmann G, Christou P. 175.  et al. 2008. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc. Natl. Acad. Sci. USA 105:18232–37 [Google Scholar]
  176. Zhu C, Naqvi S, Capell T, Christou P. 176.  2009. Metabolic engineering of ketocarotenoid biosynthesis in higher plants. Arch. Biochem. Biophys. 483:182–90 [Google Scholar]
  177. Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G. 177.  et al. 2013. Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol. J. 11:129–41 [Google Scholar]
  178. Zorrilla-López U, Masip G, Arjó G, Bai C, Banakar R. 178.  et al. 2013. Engineering metabolic pathways in plants by multigene transformation. Int. J. Dev. Biol. 57:565–76 [Google Scholar]
/content/journals/10.1146/annurev-arplant-050213-035825
Loading
/content/journals/10.1146/annurev-arplant-050213-035825
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error