1932

Abstract

Development and application of nanotechnology-enabled medical products, including drugs, devices, and in vitro diagnostics, are rapidly expanding in the global marketplace. In this review, the focus is on providing the reader with an introduction to the landscape of commercially available nanotechnology-enabled medical products as well as an overview of the international documentary standards and reference materials that support and facilitate efficient regulatory evaluation and reliable manufacturing of this diverse group of medical products. We describe the materials, test methods, and standards development needs for emerging medical products. Scientific and measurement challenges involved in the development and application of innovative nanoenabled medical products motivate discussion throughout this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-091619-102216
2020-06-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/anchem/13/1/annurev-anchem-091619-102216.html?itemId=/content/journals/10.1146/annurev-anchem-091619-102216&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Hoffmann SB, Halamoda-Kenzaoui B, Borgos SE 2018. Identification of regulatory needs for nanomedicines. J. Interdiscip. Nanomed. 3:14–15
    [Google Scholar]
  2. 2. 
    Van Norman GA. 2016. Drugs, devices, and the FDA: part 2. An overview of approval processes: FDA approval of medical devices. JACC Basic Transl. Sci. 1:4277–87
    [Google Scholar]
  3. 3. 
    Coty JB, Vauthier C. 2018. Characterization of nanomedicines: a reflection on a field under construction needed for clinical translation success. J. Control. Release 275:254–68
    [Google Scholar]
  4. 4. 
    Halamoda-Kenzaoui B, Holzwarth U, Roebben G, Bogni A, Bremer-Hoffmann S 2019. Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11:1e1531
    [Google Scholar]
  5. 5. 
    Jain RK, Stylianopoulos T. 2010. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7:11653–64
    [Google Scholar]
  6. 6. 
    D'Mello SR, Cruz CN, Chen ML, Kapoor M, Lee SL, Tyner KM 2017. The evolving landscape of drug products containing nanomaterials in the United States. Nat. Nanotechnol. 12:6523–29
    [Google Scholar]
  7. 7. 
    Noorlander CW, Kooi MW, Oomen AG, Park MVDZ, Vandebriel RJ, Geertsma RE 2015. Horizon scan of nanomedicinal products. Nanomedicine 10:101599–608
    [Google Scholar]
  8. 8. 
    Wagner V, Dullaart A, Bock AK, Zweck A 2006. The emerging nanomedicine landscape. Nat. Biotechnol. 24:101211–17
    [Google Scholar]
  9. 9. 
    Shi J, Kantoff PW, Wooster R, Farokhzad OC 2017. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17:120–37
    [Google Scholar]
  10. 10. 
    Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J 2013. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomed. Nanotechnol. Biol. Med. 9:11–14
    [Google Scholar]
  11. 11. 
    Wu Y, Petrochenko P, Chen L, Wong SY, Absar M et al. 2016. Core size determination and structural characterization of intravenous iron complexes by cryogenic transmission electron microscopy. Int. J. Pharmaceut. 505:1–2167–74
    [Google Scholar]
  12. 12. 
    Editorial 2018. A triumph of perseverance over interference. Nat. Biotechnol. 36:9775
    [Google Scholar]
  13. 13. 
    Anselmo AC, Mitragotri S. 2016. Nanoparticles in the clinic. Bioeng. Transl. Med. 1:110–29
    [Google Scholar]
  14. 14. 
    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR 2016. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33:102373–87
    [Google Scholar]
  15. 15. 
    Eur. Comm 2015. Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Opinion on the Guidance on the Determination of Potential Health Effects of Nanomaterials Used in Medical Devices Luxembourg: Eur. Comm https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_045.pdf
  16. 16. 
    Pelaz B, Alexiou CH, Alvarez-Puebla RA, Alves F, Andrews AM et al. 2017. Diverse applications of nanomedicine. ACS Nano 11:32313–81
    [Google Scholar]
  17. 17. 
    Furno F, Morley KS, Wong B, Sharp BL, Arnold PL et al. 2004. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. ? J. Antimicrob. Chemoth. 54:61019–24
    [Google Scholar]
  18. 18. 
    Zhou ZG, Sun YA, Shen JC, Wei J, Yu C et al. 2014. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35:267470–78
    [Google Scholar]
  19. 19. 
    Dong ZH, Li YB, Zou Q 2009. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 255:126087–91
    [Google Scholar]
  20. 20. 
    Sun J, Petersen EJ, Watson SS, Sims CM, Kassman A et al. 2017. Biophysical characterization of functionalized titania nanoparticles and their application in dental adhesives. Acta Biomater 535:85–97
    [Google Scholar]
  21. 21. 
    Ge LP, Li QT, Wang M, Ouyang J, Li XJ, Xing MMQ 2014. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomed. 92:399–407
    [Google Scholar]
  22. 22. 
    Jones AD 3rd, Mi G, Webster TJ 2019. A status report on FDA approval of medical devices containing nanostructured materials. Trends Biotechnol 37:2117–20
    [Google Scholar]
  23. 23. 
    Geertsma RE, Park MVDZ, Puts CF, Roszek B, van der Stijl R, de Jong WH 2015. Nanotechnologies in medical devices RIVM Rep. 2015-0149, Natl. Inst. Public Health Environ., Bilthoven, Neth. https://pdfs.semanticscholar.org/0ee9/49097779eaf41b0d944ecaea3ea7bd020af7.pdf
  24. 24. 
    MarketandMarkets 2015. Nanotechnology in medical devices market by product (biochip, implant materials, medical textiles, wound dressings, cardiac rhythm management devices, hearing aid), Application (therapeutic, diagnostic, research)—global forecast to 2019 Rep., MarketsandMarkets, Hadapsar India: https://www.marketsandmarkets.com/PressReleases/nanotechnology-medical-device.asp
  25. 25. 
    Baptista PV. 2014. Nanodiagnostics: leaving the research lab to enter the clinics. ? Diagnosis 1:4305–9
    [Google Scholar]
  26. 26. 
    Commission Regulation 2017. /746, Regulation of the European Parliament and of the Council of 5 April 2017 on in vitro diagnostic medical devices and repealing Directive 98/79/EC and Commission Decision 2010/227/EU, 2017 O.J. (L 117). 176
  27. 27. 
    Azzazy HM, Mansour MM. 2009. In vitro diagnostic prospects of nanoparticles. Clin. Chim. Acta 403:1–21–8
    [Google Scholar]
  28. 28. 
    Azzazy HM, Mansour MM, Kazmierczak SC 2006. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clin. Chem. 52:71238–46
    [Google Scholar]
  29. 29. 
    Jain KK. 2003. Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert. Rev. Mol. Diagn. 3:2153–61
    [Google Scholar]
  30. 30. 
    Cordeiro M, Carlos FF, Pedrosa P, Lopez A, Baptista PV 2016. Gold nanoparticles for diagnostics: advances towards points of care. Diagnostics 6:443
    [Google Scholar]
  31. 31. 
    Zhou W, Gao X, Liu DB, Chen XY 2015. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 115:1910575–636
    [Google Scholar]
  32. 32. 
    Nam JM, Thaxton CS, Mirkin CA 2003. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:56411884–86
    [Google Scholar]
  33. 33. 
    Alvarez MM, Aizenberg J, Analoui M, Andrews AM, Bisker G et al. 2017. Emerging trends in micro- and nanoscale technologies in medicine: from basic discoveries to translation. ACS Nano 11:65195–214
    [Google Scholar]
  34. 34. 
    Gioria S, Caputo F, Urbán P, Maguire CM, Bremer-Hoffmann S et al. 2018. Are existing standard methods suitable for the evaluation of nanomedicines: some case studies. Nanomedicine 13:5539–54
    [Google Scholar]
  35. 35. 
    Halamoda-Kenzaoui B, Baconnier S, Bastogne T, Bazile D, Boisseau P et al. 2019. Bridging communities in the field of nanomedicine. Regul. Toxicol. Pharmacol. 106:187–96
    [Google Scholar]
  36. 36. 
    Glob. Summit Regul. Sci 2016. 2016 Global Summit on Regulatory Science (GSRS16): nanotechnology standards and applications Rep., Sept., Glob. Summit Regul. Sci. https://www.astm.org/COMMIT/GSRS16%20Final%20Report.pdf
  37. 37. 
    Miernicki M, Hofmann T, Eisenberger I, von der Kammer F, Praetorius A 2019. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14:3208–16
    [Google Scholar]
  38. 38. 
    Leong HS, Butler KS, Brinker CJ, Azzawi M, Conlan S et al. 2019. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14:7629–35
    [Google Scholar]
  39. 39. 
    Natl. Res. Counc 2001. Preliminary Comments. Review of the National Nanotechnology Initiative Washington, DC: Natl. Acad. Press https://doi.org/10.17226/10216
    [Crossref]
  40. 40. 
    EuroNanoMed2/ETP Nanomedicine 2016. Strategic research and innovation agenda for nanomedicine 2016–2030 Rep., EuroNanoMed2/ETP Nanomedicine Paris: https://etp-nanomedicine.eu/wp-content/uploads/2018/09/Nanomedicine-SRIA-2016-2030.pdf
  41. 41. 
    Weissig V, Pettinger TK, Murdock N 2014. Nanopharmaceuticals (part 1): products on the market. Int. J. Nanomed. 94:357–73
    [Google Scholar]
  42. 42. 
    Venditto VJ, Szoka FC Jr 2013. Cancer nanomedicines: so many papers and so few drugs. ! Adv. Drug Deliv. Rev. 65:180–88
    [Google Scholar]
  43. 43. 
    Bray F, Moller B. 2006. Predicting the future burden of cancer. Nat. Rev. Cancer 6:163–74
    [Google Scholar]
  44. 44. 
    Blomley MJK, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO 2001. Science, medicine, and the future—microbubble contrast agents: a new era in ultrasound. BMJ 322:72961222–25
    [Google Scholar]
  45. 45. 
    Qin SP, Caskey CF, Ferrara KW 2009. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys. Med. Biol. 54:6R27–57
    [Google Scholar]
  46. 46. 
    Oeffinger BE, Wheatley MA. 2004. Development and characterization of a nano-scale contrast agent. Ultrasonics 42:1–9343–47
    [Google Scholar]
  47. 47. 
    Bing CC, Hong Y, Hernandez C, Rich M, Cheng BB et al. 2018. Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control. Sci. Rep. 8:7986
    [Google Scholar]
  48. 48. 
    He CJ, Zheng S, Luo Y, Wang B 2018. Exosome theranostics: biology and translational medicine. Theranostics 8:1237–55
    [Google Scholar]
  49. 49. 
    György B, Szabó TG, Pásztói M, Pál Z, Misják P et al. 2011. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68:162667–88
    [Google Scholar]
  50. 50. 
    El Andaloussi S, Mäger I, Breakefield XO, Wood MJA 2013. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12:5348–58
    [Google Scholar]
  51. 51. 
    Roy S, Hochberg FH, Jones PS 2018. Extracellular vesicles: the growth as diagnostics and therapeutics; a survey. J. Extracell. Vesicles 7:11438720
    [Google Scholar]
  52. 52. 
    Batrakova EV, Kim MS. 2016. Development and regulation of exosome-based therapy products. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 8:5744–57
    [Google Scholar]
  53. 53. 
    Li P, Kaslan M, Lee SH, Yao J, Gao Z 2017. Progress in exosome isolation techniques. Theranostics 7:3789–804
    [Google Scholar]
  54. 54. 
    Höög JL, Lötvall J. 2015. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J. Extracell. Vesicles 4:128680
    [Google Scholar]
  55. 55. 
    Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J 2017. The methods of choice for extracellular vesicles (EVs) characterization. Int. J. Mol. Sci. 18:61153
    [Google Scholar]
  56. 56. 
    Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7:11535750
    [Google Scholar]
  57. 57. 
    Mercola KE, Stang HD, Browne J, Salser W, Cline MJ 1980. Insertion of a new gene of viral origin into bone-marrow cells of mice. Science 208:44471033–35
    [Google Scholar]
  58. 58. 
    Mateu MG. 2016. Assembly, engineering and applications of virus-based protein nanoparticles. Protein-Based Engineered Nanostructures. Advances in Experimental Medicine and Biology A Cortajarena, T Grove 83–120 Cham, Switz: Springer
    [Google Scholar]
  59. 59. 
    Felnerova D, Viret JF, Glück R, Moser C 2004. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr. Opin. Biotech. 15:6518–29
    [Google Scholar]
  60. 60. 
    Ludwig C, Wagner R. 2007. Virus-like particles—universal molecular toolboxes. Curr. Opin. Biotech. 18:6537–45
    [Google Scholar]
  61. 61. 
    Zuber G, Dauty E, Nothisen M, Belguise P, Behr JP 2001. Towards synthetic viruses. Adv. Drug Deliv. Rev. 52:3245–53
    [Google Scholar]
  62. 62. 
    Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P et al. 2006. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol. Ther. 14:4564–70
    [Google Scholar]
  63. 63. 
    Juanola-Feliu E, Colomer-Farrarons J, Miribel-Catala P, Samitier J, Valls-Pasola J 2012. Market challenges facing academic research in commercializing nanoenabled implantable devices for in-vivo biomedical analysis. Technovation 32:3–4193–204
    [Google Scholar]
  64. 64. 
    Przekora A, Benko A, Nocun M, Wyrwa J, Blazewicz M, Ginalska G 2014. Titanium coated with functionalized carbon nanotubes—a promising novel material for biomedical application as an implantable orthopaedic electronic device. Mater. Sci. Eng. C 45:287–96
    [Google Scholar]
  65. 65. 
    Juanola-Feliu E, Miribel-Catala PL, Aviles CP, Colomer-Farrarons J, Gonzalez-Pinero M, Samitier J 2014. Design of a customized multipurpose nanoenabled implantable system for in-vivo theranostics. Sensors 14:1019275–306
    [Google Scholar]
  66. 66. 
    Ferraris S, Spriano S. 2016. Antibacterial titanium surfaces for medical implants. Mater. Sci. Eng. C 61:965–78
    [Google Scholar]
  67. 67. 
    Marassi V, Di Cristo L, Smith SGJ, Ortelli S, Blosi M et al. 2014. Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 5:1 https://doi.org/10.1098/rsos.171113
    [Crossref] [Google Scholar]
  68. 68. 
    Polivková M, Hubáček T, Staszek M, Švorčík V, Siegel J 2017. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 18:2419
    [Google Scholar]
  69. 69. 
    Adams CP, Walker KA, Obare SO, Docherty KM 2014. Size-dependent antimicrobial dffects of novel palladium nanoparticles. PLOS ONE 9:1e85981
    [Google Scholar]
  70. 70. 
    Ben-Sasson M, Zodrow KR, Qi GG, Kang Y, Giannelis EP, Elimelech M 2014. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ. Sci. Technol. 48:1384–93
    [Google Scholar]
  71. 71. 
    Li XN, Robinson SM, Gupta A, Saha K, Jiang ZW et al. 2014. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8:1010682–86
    [Google Scholar]
  72. 72. 
    Musazzi UM, Marini V, Casiraghi A, Minghetti P 2017. Is the European regulatory framework sufficient to assure the safety of citizens using health products containing nanomaterials. ? Drug Discov. Today 22:6870–82
    [Google Scholar]
  73. 73. 
    Freedonia Group 2010. Nanotechnology in health care Ind. Study Rep. 2622, Freedonia Group, Cleveland, OH. https://www.freedoniagroup.com/industry-study/nanotechnology-in-health-care-2622.htm
  74. 74. 
    Commission Recommendation 2011. /696/EU, Recommendation of 18 October 2011 on the definition of nanomaterial, 2011 O.J. (L 275). 38
  75. 75. 
    Counc. Eur. Union 2016. Proposal for a regulation of the European Parliament and of the council on medical devices, and amending Directive 2011/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 Draft Rep., Eur. Parliam Brussels: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//NONSGML+COMPARL+PE-510.767+01+DOC+PDF+V0//EN&language=EN
  76. 76. 
    Commission Regulation 2017. /745, Regulation of the European Parliament and of the Council on Medical Devices, and Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EEC; 2017. O.J. (L 117) 1
  77. 77. 
    Giri S, Sykes EA, Jennings TL, Chan WCW 2011. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano 5:31580–87
    [Google Scholar]
  78. 78. 
    Meng ZJ, Song RH, Chen Y, Zhu Y, Tian YH et al. 2013. Rapid screening and identification of dominant B cell epitopes of HBV surface antigen by quantum dot-based fluorescence polarization assay. Nanoscale Res. Lett. 8:18
    [Google Scholar]
  79. 79. 
    Gao ZQ, Ye HH, Tang DY, Tao J, Habibi S et al. 2017. Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics. Nano Lett 17:95572–79
    [Google Scholar]
  80. 80. 
    Kim J, Biondi MJ, Feld JJ, Chan WCW 2016. Clinical validation of quantum dot barcode diagnostic technology. ACS Nano 10:44742–53
    [Google Scholar]
  81. 81. 
    Yan R, Moon S, Kenny SJ, Xu K 2018. Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy. Accounts Chem. Res. 51:3697–705
    [Google Scholar]
  82. 82. 
    Alix-Panabieres C, Pantel K. 2013. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59:1110–18
    [Google Scholar]
  83. 83. 
    Maltez-da Costa M, de la Escosura-Muniz A, Nogues C, Barrios L, Ibanez E, Merkoci A 2012. Simple monitoring of cancer cells using nanoparticles. Nano Lett 12:84164–71
    [Google Scholar]
  84. 84. 
    Yaari Z, da Silva D, Zinger A, Goldman E, Kajal A et al. 2016. Theranostic barcoded nanoparticles for personalized cancer medicine. Nat. Commun. 7:13325
    [Google Scholar]
  85. 85. 
    Rios A, Barcelo D, Buydens L, Cardenas S, Heydorn K et al. 2003. Quality assurance of qualitative analysis in the framework of the European project ‘MEQUALAN. .’ Accredit. Qual. Assur. 8:268–77
    [Google Scholar]
  86. 86. 
    Song R, Schlecht PC, Ashley K 2001. Field screening test methods: performance criteria and performance characteristics. J. Hazard Mater. 83:1–229–39
    [Google Scholar]
  87. 87. 
    Pulido A, Ruisanchez I, Boque R, Ruis FX 2003. Uncertainty of results in routine qualitative analysis. Trends Anal. Chem. 22:10647–54
    [Google Scholar]
  88. 88. 
    Ellison SLR, Gregory S. 1998. Quantifying uncertainty in qualitative analysis. Analyst 123:51155–61
    [Google Scholar]
  89. 89. 
    Int. Organ. Stand 2005. Program of Work and Status, Current ISO/TC 229 Program of Work (2/22/2019), WG 5 ISO/PWI ISO/TC 229 Geneva: Int. Organ. Stand https://www.iso.org/committee/381983.html
  90. 90. 
    Lin-Gibson S, Sarkar S, Elliott J 2018. Summary of the National Institute of Standards and Technology and US Food and Drug Administration cell counting workshop: sharing practices in cell counting measurements. Cytotherapy 20:6785–95
    [Google Scholar]
  91. 91. 
    Lin-Gibson S, Sarkar S, Elliott J, Plant A 2016. Understanding and managing sources of variability in cell measurements. Cell Gene Ther. Insights 2:6663–73
    [Google Scholar]
  92. 92. 
    Lin-Gibson S, Sarkar S, Ito Y 2016. Defining quality attributes to enable measurement assurance for cell therapy products. Cytotherapy 18:101241–44
    [Google Scholar]
  93. 93. 
    Sarkar S, Pierce L, Lin-Gibson S, Lund SP 2019. Standards landscape in cell counting: implications for cell & gene therapy. Cell Gene Ther. Insights 5:1117–31
    [Google Scholar]
  94. 94. 
    Simon CG, Lin-Gibson S, Elliott JT, Sarkar S, Plant AL 2016. Strategies for achieving measurement assurance for cell therapy products. Stem Cells Transl. Med. 5:6705–8
    [Google Scholar]
  95. 95. 
    Taverniers I, Van Bockstaele E, De Loose M 2004. Trends in quality in the analytical laboratory. I. Traceability and measurement uncertainty of analytical results. Trend. Anal. Chem. 23:7480–90
    [Google Scholar]
  96. 96. 
    Taverniers I, De Loose M, Van Bockstaele E 2004. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal. Chem. 23:8535–52
    [Google Scholar]
  97. 97. 
    Elliott JT, Rosslein M, Song NW, Toman B, Kinsner-Ovaskainen A et al. 2017. Toward achieving harmonization in a nanocytotoxicity assay measurement through an interlaboratory comparison study. ALTEX 34:2201–18
    [Google Scholar]
  98. 98. 
    Hanna SK, Cooksey GA, Dong S, Nelson BC, Mao L et al. 2016. Feasibility of using a standardized Caenorhabditis elegans toxicity test to assess nanomaterial toxicity. Environ. Sci. Nano 3:51080–89
    [Google Scholar]
  99. 99. 
    Rösslein M, Elliott JT, Salit M, Petersen EJ, Hirsch C et al. 2015. Use of cause-and-effect analysis to design a high-quality nanocytotoxicology assay. Chem. Res. Toxicol. 28:121–30
    [Google Scholar]
  100. 100. 
    Scanlan LD, Lund SP, Coskun SH, Hanna SK, Johnson ME et al. 2018. Counting Caenorhabditis elegans: protocol optimization and applications for population growth and toxicity studies in liquid medium. Sci. Rep. 8:904
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-091619-102216
Loading
/content/journals/10.1146/annurev-anchem-091619-102216
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error