1932

Abstract

Viruses are an important but sequence-diverse and often understudied component of the phytobiome. We succinctly review current information on how plant viruses directly affect plant health and physiology and consequently have the capacity to modulate plant interactions with their biotic and abiotic environments. Virus interactions with other biota in the phytobiome, including arthropods, fungi, and nematodes, may also impact plant health. For example, viruses interact with and modulate the interface between plants and insects. This has been extensively studied for insect-vectored plant viruses, some of which also infect their vectors. Other viruses have been shown to alter the impacts of plant-interacting phytopathogenic and nonpathogenic fungi and bacteria. Viruses that infect nematodes have also recently been discovered, but the impact of these and phage infecting soil bacteria on plant health remain largely unexplored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-virology-092917-043421
2018-09-29
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/virology/5/1/annurev-virology-092917-043421.html?itemId=/content/journals/10.1146/annurev-virology-092917-043421&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Bergh O, Borsheim KY, Bratbak G, Heldal M 1989. High abundance of viruses found in aquatic environments. Nature 340:467–68
    [Google Scholar]
  2. 2.  Suttle CA 2005. Viruses in the sea. Nature 437:356–61
    [Google Scholar]
  3. 3.  Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M 2017. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4:201–19
    [Google Scholar]
  4. 4.  Wren JD, Roossinck MJ, Nelson RS, Scheets K, Palmer MW, Melcher U 2006. Plant virus biodiversity and ecology. PLOS Biol 4:e80
    [Google Scholar]
  5. 5.  Brunt AA, Crabtree K, Dallwitz MJ, Gibbs AJ, Watson L 1996. Viruses of Plants: Descriptions and Lists from the VIDE Database Wallingford, UK: CABI
  6. 6.  Stack J, Cardwell K, Hammerschmidt R, Byrne J, Snover-Clift K et al. 2006. The National Plant Diagnostic Network. Plant Dis 90:128–36
    [Google Scholar]
  7. 7.  Roossinck MJ, Martin DP, Roumagnac P 2015. Plant virus metagenomics: advances in virus discovery. Phytopathology 105:716–27
    [Google Scholar]
  8. 8.  Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P 2004. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19:535–44
    [Google Scholar]
  9. 9.  Mahuku G, Lockhart BE, Wanjala B, Jones MW, Kimunye JN et al. 2015. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa. Phytopathology 105:956–65
    [Google Scholar]
  10. 10.  Roy A, Hartung JS, Schneider WL, Shao J, Leon G et al. 2015. Role bending: complex relationships between viruses, hosts, and vectors related to citrus leprosis, an emerging disease. Phytopathology 105:1013–25
    [Google Scholar]
  11. 11.  Sudarshana MR, Perry KL, Fuchs MF 2015. Grapevine red blotch-associated virus, an emerging threat to the grapevine industry. Phytopathology 105:1026–32
    [Google Scholar]
  12. 12.  Okada R, Kiyota E, Sabanadzovic S, Moriyama H, Fukuhara T et al. 2011. Bell pepper endornavirus: molecular and biological properties, and occurrence in the genus Capsicum. J. Gen. . Virol 92:2664–73
    [Google Scholar]
  13. 13.  Malmstrom CM, Melcher U, Bosque-Perez NA 2011. The expanding field of plant virus ecology: historical foundations, knowledge gaps, and research directions. Virus Res 159:84–94
    [Google Scholar]
  14. 14.  Jones RAC 2014. Plant virus ecology and epidemiology: historical perspectives, recent progress and future prospects. Ann. Appl. Biol. 164:320–47
    [Google Scholar]
  15. 15.  Melcher U, Muthukumar V, Wiley GB, Min BE, Palmer MW et al. 2008. Evidence for novel viruses by analysis of nucleic acids in virus-like particle fractions from Ambrosia psilostachya. J. Virol. Methods 152:49–55
    [Google Scholar]
  16. 16.  Raybould AF, Maskell LC, Edwards M-L, Cooper JI, Gray AJ 1999. The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. . New Phytol 141:265–75
    [Google Scholar]
  17. 17.  Pagan I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, Garcia-Arenal F 2010. Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philos. Trans. R. Soc. B 365:1983–95
    [Google Scholar]
  18. 18.  Hammond J 1981. Viruses occuring in Plantago species in England. Plant Pathol 30:237–43
    [Google Scholar]
  19. 19.  Roossinck MJ, Saha P, Wiley GB, Quan J, White JD et al. 2010. Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol. Ecol. 19:Suppl. 181–88
    [Google Scholar]
  20. 20.  Dodds JA, Morris TJ, Jordan RL 1984. Plant viral double-stranded RNA. Annu. Rev. Phytopathol. 22:151–68
    [Google Scholar]
  21. 21.  Roossinck MJ 2010. Lifestyles of plant viruses. Philos. Trans. R. Soc. B 365:1899–905
    [Google Scholar]
  22. 22.  Muthukumar V, Melcher U, Pierce M, Wiley GB, Roe BA et al. 2009. Non-cultivated plants of the Tallgrass Prairie Preserve of northeastern Oklahoma frequently contain virus-like sequences in particulate fractions. Virus Res 141:169–73
    [Google Scholar]
  23. 23.  Min BE, Feldman TS, Ali A, Wiley G, Muthukumar V et al. 2012. Molecular characterization, ecology, and epidemiology of a novel tymovirus in Asclepias viridis from Oklahoma. Phytopathology 102:166–76
    [Google Scholar]
  24. 24.  Scheets K 2013. Infectious transcripts of an asymptomatic panicovirus identified from a metagenomic survey. Virus Res 176:161–68
    [Google Scholar]
  25. 25.  Scheets K, Blinkova O, Melcher U, Palmer MW, Wiley GB et al. 2011. Detection of members of the Tombusviridae in the Tallgrass Prairie Preserve, Osage County, Oklahoma, USA. Virus Res 160:256–63
    [Google Scholar]
  26. 26.  Thapa V, Melcher U, Wiley GB, Doust A, Palmer MW et al. 2012. Detection of members of the Secoviridae in the Tallgrass Prairie Preserve, Osage County, Oklahoma, USA. Virus Res 167:34–42
    [Google Scholar]
  27. 27.  Al Rwahnih M, Daubert S, Golino D, Rowhani A 2009. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387:395–401
    [Google Scholar]
  28. 28.  Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C 2009. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–14
    [Google Scholar]
  29. 29.  Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S et al. 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7
    [Google Scholar]
  30. 30.  Whitham SA, Yang C, Goodin MM 2006. Global impact: elucidating plant responses to viral infection. Mol. Plant Microbe Interact. 19:1207–15
    [Google Scholar]
  31. 31.  Ascencio-Ibanez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD et al. 2008. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–54
    [Google Scholar]
  32. 32.  Babu M, Griffiths JS, Huang TS, Wang A 2008. Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genom 9:325
    [Google Scholar]
  33. 33.  Geri C, Cecchini E, Giannakou ME, Covey SN, Milner JJ 1999. Altered patterns of gene expression in Arabidopsis elicited by cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. Mol. Plant Microbe Interact. 12:377–84
    [Google Scholar]
  34. 34.  Golem S, Culver JN 2003. Tobacco mosaic virus induced alterations in the gene expression profile of Arabidopsis thaliana. Mol. . Plant Microbe Interact 16:681–88
    [Google Scholar]
  35. 35.  Ishihara T, Sakurai N, Sekine KT, Hase S, Ikegami M et al. 2004. Comparative analysis of expressed sequence tags in resistant and susceptible ecotypes of Arabidopsis thaliana infected with cucumber mosaic virus. Plant Cell Physiol 45:470–80
    [Google Scholar]
  36. 36.  Postnikova OA, Nemchinov LG 2012. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses. Virol. J. 9:101
    [Google Scholar]
  37. 37.  Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ et al. 2005. Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J. Virol. 79:2517–27
    [Google Scholar]
  38. 38.  Whitham SA, Quan S, Chang HS, Cooper B, Estes B et al. 2003. Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–83
    [Google Scholar]
  39. 39.  Garcia-Marcos A, Pacheco R, Martianez J, Gonzalez-Jara P, Diaz-Ruiz JR, Tenllado F 2009. Transcriptional changes and oxidative stress associated with the synergistic interaction between Potato virus X and Potato virus Y and their relationship with symptom expression. Mol. Plant Microbe Interact. 22:1431–44
    [Google Scholar]
  40. 40.  Senthil G, Liu H, Puram VG, Clark A, Stromberg A, Goodin MM 2005. Specific and common changes in Nicotiana benthamiana gene expression in response to infection by enveloped viruses. J. Gen. Virol. 86:2615–25
    [Google Scholar]
  41. 41.  Mandadi KK, Scholthof KB 2012. Characterization of a viral synergism in the monocot Brachypodium distachyon reveals distinctly altered host molecular processes associated with disease. Plant Physiol 160:1432–52
    [Google Scholar]
  42. 42.  Csorba T, Kontra L, Burgyan J 2015. Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence. Virology 479–480:85–103
    [Google Scholar]
  43. 43.  Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA 2007. Transcript profiling in host-pathogen interactions. Annu. Rev. Phytopathol. 45:329–69
    [Google Scholar]
  44. 44.  Anjanappa RB, Mehta D, Okoniewski MJ, Szabelska-Beresewicz A, Gruissem W, Vanderschuren H 2018. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response. Mol. Plant Pathol. 19:476–89
    [Google Scholar]
  45. 45.  Herranz MC, Niehl A, Rosales M, Fiore N, Zamorano A et al. 2013. A remarkable synergistic effect at the transcriptomic level in peach fruits doubly infected by prunus necrotic ringspot virus and peach latent mosaic viroid. Virol. J. 10:164
    [Google Scholar]
  46. 46.  Rubio M, Rodriguez-Moreno L, Ballester AR, de Moura MC, Bonghi C et al. 2015. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Mol. Plant Pathol. 16:164–76
    [Google Scholar]
  47. 47.  Gomez-Aix C, Pascual L, Canizares J, Sanchez-Pina MA, Aranda MA 2016. Transcriptomic profiling of Melon necrotic spot virus-infected melon plants revealed virus strain and plant cultivar-specific alterations. BMC Genom 17:429
    [Google Scholar]
  48. 48.  Hanssen IM, van Esse HP, Ballester AR, Hogewoning SW, Parra NO et al. 2011. Differential tomato transcriptomic responses induced by Pepino mosaic virus isolates with differential aggressiveness. Plant Physiol 156:301–18
    [Google Scholar]
  49. 49.  Cho WK, Lian S, Kim SM, Seo BY, Jung JK, Kim KH 2015. Time-course RNA-Seq analysis reveals transcriptional changes in rice plants triggered by Rice stripe virus infection. PLOS ONE 10:e0136736
    [Google Scholar]
  50. 50.  Kazan K, Lyons R 2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–309
    [Google Scholar]
  51. 51.  Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R et al. 2016. Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. New Phytol 211:1020–34
    [Google Scholar]
  52. 52.  Schoelz JE, Leisner S 2017. Setting up shop: the formation and function of the viral factories of Cauliflower mosaic virus. Front. Plant Sci. 8:1832
    [Google Scholar]
  53. 53.  Love AJ, Geri C, Laird J, Carr C, Yun BW et al. 2012. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLOS ONE 7:e47535
    [Google Scholar]
  54. 54.  Love AJ, Laval V, Geri C, Laird J, Tomos AD et al. 2007. Components of Arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to Cauliflower mosaic virus by restricting long-distance movement. Mol. Plant Microbe Interact. 20:659–70
    [Google Scholar]
  55. 55.  Dong X 2004. NPR1, all things considered. Curr. Opin. Plant Biol. 7:547–52
    [Google Scholar]
  56. 56.  Pieterse CM, van Loon LC 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7:456–64
    [Google Scholar]
  57. 57.  Davis RE, Ross AF 1968. Increased hypersensitivity induced in tobacco by systemic infection by potato virus Y. Virology 34:509–20
    [Google Scholar]
  58. 58.  Pruss GJ, Lawrence CB, Bass T, Li QQ, Bowman LH, Vance V 2004. The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology 320:107–20
    [Google Scholar]
  59. 59.  Yang L, Xu Y, Liu Y, Meng D, Jin T, Zhou X 2016. HC-Pro viral suppressor from tobacco vein banding mosaic virus interferes with DNA methylation and activates the salicylic acid pathway. Virology 497:244–50
    [Google Scholar]
  60. 60.  Anandalakshmi R, Marathe GJ, Ge X, Marathe R, Mallory AC et al. 1998. A viral suppressor of gene silencing in plants. PNAS 95:13079–84
    [Google Scholar]
  61. 61.  Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW et al. 1998. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. . EMBO J 17:6739–46
    [Google Scholar]
  62. 62.  Kasschau KD, Carrington JC 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–70
    [Google Scholar]
  63. 63.  Pruss G, Ge X, Shi XM, Carrington JC, Bowman Vance V 1997. Plant viral synergism: the potyviral genome encodes a broad-range pathogencity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859–68
    [Google Scholar]
  64. 64.  Lewsey MG, Murphy AM, Maclean D, Dalchau N, Westwood JH et al. 2010. Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol. Plant Microbe Interact. 23:835–45
    [Google Scholar]
  65. 65.  Sunter G, Sunter JL, Bisaro DM 2001. Plants expressing tomato golden mosaic virus AL2 or beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285:59–70
    [Google Scholar]
  66. 66.  Hao L, Wang H, Sunter G, Bisaro DM 2003. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15:1034–48
    [Google Scholar]
  67. 67.  Lozano-Duran R, Rosas-Diaz T, Gusmaroli G, Luna AP, Taconnat L et al. 2011. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. . Plant Cell 23:1014–32
    [Google Scholar]
  68. 68.  Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ 2008. Virus infection improves drought tolerance. New Phytol 180:911–21
    [Google Scholar]
  69. 69.  Hall AE, Loomis RS 1972. An explanation for the difference in photosynthetic capabilities of healthy and Beet Yellows Virus-infected sugar beets (Beta vulgaris L.). Plant Physiol 50:576–80
    [Google Scholar]
  70. 70.  Lindsey DW, Gudauskas RT 1975. Effects of maize darf mosaic virus on water relations in corn. Phytopathology 65:434–40
    [Google Scholar]
  71. 71.  Hogenhout SA, Ammar E-D, Whitfield AE, Redinbaugh MG 2008. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 46:327–59
    [Google Scholar]
  72. 72.  Ng JC, Falk BW 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 44:183–212
    [Google Scholar]
  73. 73.  Whitfield AE, Falk BW, Rotenberg D 2015. Insect vector-mediated transmission of plant viruses. Virology 479–480:278–89
    [Google Scholar]
  74. 74.  Bozarth RF, Diener TO 1963. Changes in concentration of free amino acids and amides induced in tobacco plants by potato virus X and potato virus Y. Virology 21:188–93
    [Google Scholar]
  75. 75.  Eigenbrode SD, Ding H, Shiel P, Berger PH 2002. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. Biol. Sci. 269:455–60
    [Google Scholar]
  76. 76.  Goodman PI, Watson MA, Hill ARC 1965. Sugar and fructosan accumulation in virus infected plants: rapid testing circular-paper chromatography. Ann. Appl. Biol. 56:65–72
    [Google Scholar]
  77. 77.  Mauck KE, De Moraes CM, Mescher MC 2014. Biochemical and physiological mechanisms underlying effects of Cucumber mosaic virus on host-plant traits that mediate transmission by aphid vectors. Plant Cell Environ 37:1427–39
    [Google Scholar]
  78. 78.  Ponzio C, Gols R, Pieterse CMI, Dicke M 2013. Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Funct. Ecol. 27:587–98
    [Google Scholar]
  79. 79.  Cassone BJ, Wijeratne S, Michel AP, Stewart LR, Chen Y et al. 2014. Virus-independent and common transcriptome responses of leafhopper vectors feeding on maize infected with semi-persistently and persistent propagatively transmitted viruses. BMC Genom 15:133
    [Google Scholar]
  80. 80.  Luan JB, Li JM, Varela N, Wang YL, Li FF et al. 2011. Global analysis of the transcriptional response of whitefly to Tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J. Virol. 85:3330–40
    [Google Scholar]
  81. 81.  Medeiros RB, de O. Resende R, de Avila AC 2004. The plant virus Tomato Spotted Wilt Tospovirus activates the immune system of its main insect vector, Frankliniella occidentalis. J. Virol. 78:4976–82
    [Google Scholar]
  82. 82.  Xu Y, Zhou W, Zhou Y, Wu J, Zhou X 2012. Transcriptome and comparative gene expression analysis of Sogatella furcifera (Horváth) in response to Southern rice black-streaked dwarf virus. PLOS ONE 7:e36238
    [Google Scholar]
  83. 83.  Ingwell LL, Eigenbrode SD, Bosque-Perez NA 2012. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2:578
    [Google Scholar]
  84. 84.  Mauck K, Bosque-Perez NA, Eigenbrode SD, De Moraes CM, Mescher MC 2012. Transmission mechanisms shape pathogen effects on host–vector interactions: evidence from plant viruses. Funct. Ecol. 26:1162–75
    [Google Scholar]
  85. 85.  Stafford CA, Walker GP, Ullman DE 2011. Infection with a plant virus modifies vector feeding behavior. PNAS 108:9350–55
    [Google Scholar]
  86. 86.  Grimstad PR, Ross QE, Craig GB Jr. 1980. Aedes triseriatus (Diptera: Culicidae) and La Crosse virus: II. Modification of mosquito feeding behavior by virus infection. J. Med. Entomol. 17:1–7
    [Google Scholar]
  87. 87.  Turell MJ, Gargan TP2nd, Bailey CL 1985. Culex pipiens (Diptera: Culicidae) morbidity and mortality associated with Rift Valley fever virus infection. J. Med. Entomol. 22:332–37
    [Google Scholar]
  88. 88.  Maris PC, Joosten NN, Goldbach RW, Peters D 2004. Tomato spotted wilt virus infection improves host suitability for its vector Frankliniella occidentalis. . Phytopathology 94:706–11
    [Google Scholar]
  89. 89.  Moreno-Delafuente A, Garzo E, Moreno A, Fereres A 2013. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLOS ONE 8:e61543
    [Google Scholar]
  90. 90.  Liu B, Preisser EL, Chu D, Pan H, Xie W et al. 2013. Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and Tomato yellow leaf curl virus. J. Virol. 87:4929–37
    [Google Scholar]
  91. 91.  Medina-Ortega KJ, Bosque-Perez NA, Ngumbi E, Jimenez-Martinez ES, Eigenbrode SD 2009. Rhopalosiphum padi (Hemiptera: Aphididae) responses to volatile cues from Barley yellow dwarf virus-infected wheat. Environ. Entomol. 38:836–45
    [Google Scholar]
  92. 92.  Montllor CB, Gildow FE 1986. Feeding responses of two grain aphids to Barley yellow dwarf virus-infected oats. Entomologia Exp. Appl. 42:63–69
    [Google Scholar]
  93. 93.  Castle SJ, Berger PH 1993. Rates of growth and increase of Myzus persicae on virus-infected potatoes according to type of virus-vector relationship. Entomol. Exp. Appl. 69:51–60
    [Google Scholar]
  94. 94.  Gildow FE 1980. Increased production of alatae by aphids reared on oats infected with Barley yellow dwarf virus. Ann. Entomol. Soc. Am. 73:343–47
    [Google Scholar]
  95. 95.  Mauck KE, De Moraes CM, Mescher MC 2010. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. PNAS 107:3600–5
    [Google Scholar]
  96. 96.  Cassone BJ, Michel AP, Stewart LR, Bansal R, Mian MA, Redinbaugh MG 2014. Reduction in fecundity and shifts in cellular processes by a native virus on an invasive insect. Genome Biol. Evol. 6:873–85
    [Google Scholar]
  97. 97.  Mauck KE, Smyers E, De Moraes CM, Mescher MC 2015. Virus infection influences host plant interactions with non-vector herbivores and predators. Funct. Ecol. 29:663–73
    [Google Scholar]
  98. 98.  Martiniere A, Bak A, Macia JL, Lautredou N, Gargani D et al. 2013. A virus responds instantly to the presence of the vector on the host and forms transmission morphs. eLife 2:e00183
    [Google Scholar]
  99. 99.  Khelifa M, Journou S, Krishnan K, Gargani D, Esperandieu P et al. 2007. Electron-lucent inclusion bodies are structures specialized for aphid transmission of cauliflower mosaic virus. J. Gen. Virol. 88:2872–80
    [Google Scholar]
  100. 100.  Martiniere A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M 2009. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. Plant J 58:135–46
    [Google Scholar]
  101. 101.  Martiniere A, Zancarini A, Drucker M 2009. Aphid transmission of Cauliflower mosaic virus: the role of the host plant. Plant Signal Behav 4:548–50
    [Google Scholar]
  102. 102.  Bak A, Cheung AL, Yang C, Whitham SA, Casteel CL 2017. A viral protease relocalizes in the presence of the vector to promote vector performance. Nat. Commun. 8:14493
    [Google Scholar]
  103. 103.  Gutierrez S, Michalakis Y, Van Munster M, Blanc S 2013. Plant feeding by insect vectors can affect lifecycle, population genetics and evolution of plant viruses. Funct. Ecol. 27:610–22
    [Google Scholar]
  104. 104.  Liu S, Vijayendran D, Bonning BC 2011. Next generation sequencing technologies for insect virus discovery. Viruses 3:1849–69
    [Google Scholar]
  105. 105.  Nuss DL 2005. Hypovirulence: mycoviruses at the fungal-plant interface. Nat. Rev. Microbiol. 3:632–42
    [Google Scholar]
  106. 106.  Ghabrial SA 1998. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 16:119–31
    [Google Scholar]
  107. 107.  Ghabrial SA, Caston JR, Jiang D, Nibert ML, Suzuki N 2015. 50-plus years of fungal viruses. Virology 479–480:356–68
    [Google Scholar]
  108. 108.  Ghabrial SA, Suzuki N 2009. Viruses of plant pathogenic fungi. Annu. Rev. Phytopathol. 47:353–84
    [Google Scholar]
  109. 109.  Anagnostakis SL 1982. Biological control of chestnut blight. Science 215:466–71
    [Google Scholar]
  110. 110.  Heiniger U, Rigling D 1994. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 32:581–99
    [Google Scholar]
  111. 111.  Merkel HW 1906. A deadly fungus on the American chestnut. Tenth Annu. Rep. N.Y. Zool. Soc. 10:97–103
    [Google Scholar]
  112. 112.  Biraghi A 1946. Il cancro del dastagno causato da Endothia parasitica. Ital. Agric. 7:1–9
    [Google Scholar]
  113. 113.  Biraghi A 1953. Possible active resistance to Endothia parasitica in Castanea sativa. Rep. Cong. Int. Union. For. Res. Org. 11:149–57
    [Google Scholar]
  114. 114.  Grente J 1965. Les forms hypovirulentes d’Endothia parasitica et les espoirs de lutte contre le chancre du chataignier. C. R. Hebd. Seances Acad. Agr. Fr. 51:1033
    [Google Scholar]
  115. 115.  Day PR, Dodds JA, Elliston JE, Jaynes RA, Anagnostakis SL 1977. Double-stranded RNA in Endothia parasitica. . Phytopathology 68:1391–96
    [Google Scholar]
  116. 116.  Chen B, Nuss DL 1999. Infectious cDNA clone of hypovirus CHV1-Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J. Virol. 73:985–92
    [Google Scholar]
  117. 117.  Choi GH, Nuss DL 1992. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257:800–3
    [Google Scholar]
  118. 118.  Hillman BI, Suzuki N 2004. Viruses of the chestnut blight fungus, Cryphonectria parasitica. Adv. Virus Res. 63:423–72
    [Google Scholar]
  119. 119.  Chen B, Geletka LM, Nuss DL 2000. Using chimeric hypoviruses to fine-tune the interaction between a pathogenic fungus and its plant host. J. Virol. 74:7562–67
    [Google Scholar]
  120. 120.  Xie J, Jiang D 2014. New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Annu. Rev. Phytopathol. 52:45–68
    [Google Scholar]
  121. 121.  Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ 2007. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–15
    [Google Scholar]
  122. 122.  Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L et al. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–16
    [Google Scholar]
  123. 123.  Herrero N, Sanchez Marquez S, Zabalgogeazcoa I 2009. Mycoviruses are common among different species of endophytic fungi of grasses. Arch. Virol. 154:327–30
    [Google Scholar]
  124. 124.  Bao X, Roossinck MJ 2013. Multiplexed interactions: viruses of endophytic fungi. Adv. Virus Res. 86:37–58
    [Google Scholar]
  125. 125.  Roossinck MJ 2015. Plants, viruses and the environment: ecology and mutualism. Virology 479–480:271–77
    [Google Scholar]
  126. 126.  Brown DJ, Robertson WM, Trudgill DL 1995. Transmission of viruses by plant nematodes. Annu. Rev. Phytopathol. 33:223–49
    [Google Scholar]
  127. 127.  Wang S, Gergerich RC, Wickizer SL, Kim KS 2002. Localization of transmissible and nontransmissible viruses in the vector nematode Xiphinema americanum. . Phytopathology 92:646–53
    [Google Scholar]
  128. 128.  Visser PB, Brown DJ, Brederode FT, Bol JF 1999. Nematode transmission of tobacco rattle virus serves as a bottleneck to clear the virus population from defective interfering RNAs. Virology 263:155–65
    [Google Scholar]
  129. 129.  Felix MA, Ashe A, Piffaretti J, Wu G, Nuez I et al. 2011. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLOS Biol 9:e1000586
    [Google Scholar]
  130. 130.  Ruark CL, Koenning SR, Davis EL, Opperman CH, Lommel SA et al. 2017. Soybean cyst nematode culture collections and field populations from North Carolina and Missouri reveal high incidences of infection by viruses. PLOS ONE 12:e0171514
    [Google Scholar]
  131. 131.  Bekal S, Domier LL, Niblack TL, Lambert KN 2011. Discovery and initial analysis of novel viral genomes in the soybean cyst nematode. J. Gen. Virol. 92:1870–79
    [Google Scholar]
  132. 132.  Loewenberg JR, Sullivan T, Schuster ML 1959. A virus disease of Meloidogyne incognita incognita, the southern root knot nematode. Nature 184:Suppl. 241896
    [Google Scholar]
  133. 133.  Foor WE 1972. Viruslike particles in a nematode. J. Parasitol. 58:1065–70
    [Google Scholar]
  134. 134.  Poinar GO Jr., Hess R 1977. Virus-like particles in the nematode Romanomermis culicivorax (Mermithidae). Nature 266:256–57
    [Google Scholar]
  135. 135.  Zuckerman BM, Himmelhoch S, Kisiel M 1973. Virus-like particles in Dolichodorus heterocephalus.. Nematologica 19:117
    [Google Scholar]
  136. 136.  Bekal S, Domier LL, Gonfa B, McCoppin NK, Lambert KN, Bhalerao K 2014. A novel flavivirus in the soybean cyst nematode. J. Gen. Virol. 95:1272–80
    [Google Scholar]
  137. 137.  Ruark CL, Gardner M, Mitchum MG, Davis EL, Sit TL 2018. Novel RNA viruses within plant parasitic cyst nematodes. PLOS ONE 13:e0193881
    [Google Scholar]
/content/journals/10.1146/annurev-virology-092917-043421
Loading
/content/journals/10.1146/annurev-virology-092917-043421
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error