1932

Abstract

Gram-positive bacteria are prominent members of plant-associated microbial communities. Although many are hypothesized to be beneficial, some are causative agents of economically important diseases of crop plants. Because the features of Gram-positive bacteria are fundamentally different relative to those of Gram-negative bacteria, the evolution and ecology as well as the mechanisms used to colonize and infect plants also differ. Here, we discuss recent advances in our understanding of Gram-positive, plant-associated bacteria and provide a framework for future research directions on these important plant symbionts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-100124
2019-08-25
2024-04-30
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-100124.html?itemId=/content/journals/10.1146/annurev-phyto-082718-100124&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agarkova IV, Lambrecht PA, Vidaver AK 2011. Genetic diversity and population structure of Clavibacter michiganensis subsp. nebraskensis. Can. J. Microbiol. 57:5366–74
    [Google Scholar]
  2. 2. 
    Agarkova IV, Lambrecht PA, Vidaver AK, Harveson RM 2012. Genetic diversity among Curtobacterium flaccumfaciens pv. flaccumfaciens populations in the American high plains. Can. J. Microbiol. 58:6788–801
    [Google Scholar]
  3. 3. 
    Agarkova IV, Vidaver AK, Postnikova EN, Riley IT, Schaad NW 2006. Genetic characterization and diversity of Rathayibacter toxicus. Phytopathology 96:111270–77
    [Google Scholar]
  4. 4. 
    Ahmad A, Mbofung GY, Acharya J, Schmidt CL, Robertson AE 2015. Characterization and comparison of Clavibactermichiganensis subsp. nebraskensis strains recovered from epiphytic and symptomatic infections of maize in Iowa. PLOS ONE 10:11e0143553
    [Google Scholar]
  5. 5. 
    Almabruk KH, Chang JH, Mahmud T 2016. Total synthesis of (±)-isoperbergins and correction of the chemical structure of perbergin. J. Nat. Prod. 79:92391–96
    [Google Scholar]
  6. 6. 
    Alvarez HM, Steinbuchel A. 2002. Triacylglycerols in prokaryotic microorganisms. Appl. Microbiol. Biotechnol. 60:4367–76
    [Google Scholar]
  7. 7. 
    Araújo WL, Marcon J, Maccheroni W, Van Elsas JD, Van Vuurde JWL, Azevedo JL 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68:104906–14
    [Google Scholar]
  8. 8. 
    Arif M, Busot GY, Mann R, Rodoni B, Liu S, Stack JP 2016. Emergence of a new population of Rathayibacter toxicus: an ecologically complex, geographically isolated bacterium. PLOS ONE 11:5e0156182
    [Google Scholar]
  9. 9. 
    Armstrong DJ, Scarbrough E, Skoog F 1976. Cytokinins in Corynebacterium fascians cultures: isolation and identification of 6-(4-Hydroxy-3-methyl-cis-2-butenylamino)-2-methylthiopurine. Plant Physiol 58:6749–52
    [Google Scholar]
  10. 10. 
    Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R et al. 2008. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol 146:41797–809
    [Google Scholar]
  11. 11. 
    Balaji V, Sessa G, Smart CD 2011. Silencing of host basal defense response-related gene expression increases susceptibility of Nicotiana benthamiana to Clavibacter michiganensis subsp. michiganensis. Phytopathology 101:3349–57
    [Google Scholar]
  12. 12. 
    Baltrus DA. 2016. Divorcing strain classification from species names. Trends Microbiol 24:6431–39
    [Google Scholar]
  13. 13. 
    Bentley SD, Corton C, Brown SE, Barron A, Clark L et al. 2008. Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation. J. Bacteriol. 190:62150–60
    [Google Scholar]
  14. 14. 
    Bouchek-Mechiche K, Gardan L, Andrivon D, Normand P 2006. Streptomyces turgidiscabies and Streptomyces reticuliscabiei: one genomic species, two pathogenic groups. Int. J. Syst. Evol. Microbiol. 56:Pt. 122771–76
    [Google Scholar]
  15. 15. 
    Braun S, Gevens A, Charkowski A, Allen C, Jansky S 2017. Potato common scab: a review of the causal pathogens, management practices, varietal resistance screening methods, and host resistance. Am. J. Potato Res. 94:4283–96
    [Google Scholar]
  16. 16. 
    Brumbley SM, Petrasovits LA, Hermann SR, Young AJ, Croft BJ 2006. Recent advances in the molecular biology of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease. Australas. Plant Pathol. 35:6681–89
    [Google Scholar]
  17. 17. 
    Bugbee WM, Gudmestad NC, Secor GA, Nolte P 1987. Sugar beet as a symptomless host for Corynebacterium sepedonicum. Phytopathology 77:765–70
    [Google Scholar]
  18. 18. 
    Bukhalid RA, Loria R. 1997. Cloning and expression of a gene from Streptomyces scabies encoding a putative pathogenicity factor. J. Bacteriol 179:247776–83
    [Google Scholar]
  19. 19. 
    Bukhalid RA, Takeuchi T, Labeda D, Loria R 2002. Horizontal transfer of the plant virulence gene, nec1, and flanking sequences among genetically distinct Streptomyces strains in the Diastatochromogenes cluster. Appl. Environ. Microbiol. 68:2738–44
    [Google Scholar]
  20. 20. 
    Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:740991–95
    [Google Scholar]
  21. 21. 
    Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M et al. 2009. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J. Microbiol. 47:4393–401
    [Google Scholar]
  22. 22. 
    Bulgari D, Minio A, Casati P, Quaglino F, Delledonne M, Bianco PA 2014. Curtobacterium sp. genome sequencing underlines plant growth promotion-related traits. Genome Announc 2:4e00592–14
    [Google Scholar]
  23. 23. 
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:Database IssueD233–38
    [Google Scholar]
  24. 24. 
    Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T 2016. The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat. Microbiol. 2:16183
    [Google Scholar]
  25. 25. 
    Carlson RR, Vidaver AK. 1982. Taxonomy of Corynebacterium plant pathogens, including a new pathogen of wheat, based on polyacrylamide gel electrophoresis of cellular proteins. Int. J. Syst. Bacteriol. 32:3315–26
    [Google Scholar]
  26. 26. 
    Cenens W, Makumi A, Mebrhatu MT, Lavigne R, Aertsen A 2013. Phage-host interactions during pseudolysogeny: lessons from the Pid/dgo interaction. Bacteriophage 3:1e25029
    [Google Scholar]
  27. 27. 
    Chang JH, Desveaux D, Creason AL 2014. The ABCs and 123s of bacterial secretion systems in plant pathogenesis. Annu. Rev. Phytopathol. 52:317–45
    [Google Scholar]
  28. 28. 
    Clark RR, Judd J, Lasek-Nesselquist E, Montgomery SA, Hoffmann JG et al. 2018. Direct cell-cell contact activates SigM to express the ESX-4 secretion system in Mycobacterium smegmatis. PNAS 115:28E6595–603
    [Google Scholar]
  29. 29. 
    Coaker GL, Meulia T, Kabelka EA, Jones AK, Francis DM 2002. A QTL controlling stem morphology and vascular development in Lycopersicon esculentum × Lycopersicon hirsutum (Solanaceae) crosses is located on chromosome 2. Am. J. Bot. 89:121859–66
    [Google Scholar]
  30. 30. 
    Cornelis K, Ritsema T, Nijsse J, Holsters M, Goethals K, Jaziri M 2001. The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants. Mol. Plant-Microbe Interact. 14:5599–608
    [Google Scholar]
  31. 31. 
    Cottyn B, Regalado E, Lanoot B, De Cleene M, Mew TW, Swings J 2001. Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91:3282–92
    [Google Scholar]
  32. 32. 
    Creason AL, Vandeputte OM, Savory EA, Davis EW, Putnam ML et al. 2014. analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLOS ONE 9:7e101996
    [Google Scholar]
  33. 33. 
    Crespi M, Messens E, Caplan AB, Van Montagu M, Desomer J 1992. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J 11:3795–804
    [Google Scholar]
  34. 34. 
    Crespi M, Vereecke D, Temmerman W, Van Montagu M, Desomer J 1994. The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. J. Bacteriol. 176:92492–501
    [Google Scholar]
  35. 35. 
    Davis EW, Tabima JF, Weisberg AJ, Lopes LD, Wiseman MS et al. 2018. Evolution of the U.S. Biological Select Agent Rathayibacter toxicus. mBio 9:4e01280–18
    [Google Scholar]
  36. 36. 
    Davis MJ, Gillaspie AG, Vidaver AK, Harris RW 1984. Clavibacter: a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. Int. J. Syst. Bacteriol 34:2107–17
    [Google Scholar]
  37. 37. 
    de Carvalho CC, Costa SS, Fernandes P, Couto I, Viveiros M 2014. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front. Physiol 5:133
    [Google Scholar]
  38. 38. 
    Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B et al. 2009. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. PNAS 106:3816428–33
    [Google Scholar]
  39. 39. 
    Depuydt S, Dolezal K, Van Lijsebettens M, Moritz T, Holsters M, Vereecke D 2008. Modulation of the hormone setting by Rhodococcus fascians results in ectopic KNOX activation in Arabidopsis. Plant Physiol 146:31267–81
    [Google Scholar]
  40. 40. 
    Dhandapani P, Song J, Novák O, Jameson PE 2016. Infection by Rhodococcus fascians maintains cotyledons as a sink tissue for the pathogen. Ann. Bot. 119:841–52
    [Google Scholar]
  41. 41. 
    Dhandapani P, Song J, Novák O, Jameson PE 2018. Both epiphytic and endophytic strains of Rhodococcus fascians influence transporter gene expression and cytokinins in infected Pisum sativum L. seedlings. Plant Growth Regul 85:2231–42
    [Google Scholar]
  42. 42. 
    Dreier J, Meletzus D, Eichenlaub R 1997. Characterization of the plasmid encoded virulence region pat-1 of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Mol. Plant-Microbe Interact. 10:2195–206
    [Google Scholar]
  43. 43. 
    Eason J, Morris R, Jameson P 1996. The relationship between virulence and cytokinin production by Rhodococcus fascians (Tilford 1936) Goodfellow 1984. Plant Pathol 45:2323–31
    [Google Scholar]
  44. 44. 
    Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:8E911–20
    [Google Scholar]
  45. 45. 
    Eichenlaub R, Gartemann K-H. 2011. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. Annu. Rev. Phytopathol. 49:445–64
    [Google Scholar]
  46. 46. 
    Eichenlaub R, Gartemann K-H, Burger A 2006. Clavibacter michiganensis, a group of gram-positive phytopathogenic bacteria. Plant-Associated Bacteria SS Gnanamanickam 385–421 Dordrecht, Neth.: Springer
    [Google Scholar]
  47. 47. 
    Evtushenko LI, Dorofeeva LV, Subbotin SA, Cole JR, Tiedje JM 2000. Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of “Corynebacterium aquaticum” Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50:Pt. 1371–80
    [Google Scholar]
  48. 48. 
    Felix G, Boller T. 2003. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J. Biol. Chem. 278:86201–8
    [Google Scholar]
  49. 49. 
    Francis IM, Jourdan S, Fanara S, Loria R, Rigali S 2015. The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. mBio 6:2e02018–14
    [Google Scholar]
  50. 50. 
    Francis IM, Stes E, Zhang Y, Rangel D, Audenaert K, Vereecke D 2016. Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. New Biotechnol 33:5 Pt. B706–17
    [Google Scholar]
  51. 51. 
    Fry BA, Loria R. 2002. Thaxtomin A: evidence for a plant cell wall target. Physiol. Mol. Plant Pathol. 60:11–8
    [Google Scholar]
  52. 52. 
    Fyans JK, Bignell D, Loria R, Toth I, Palmer T 2013. The ESX/type VII secretion system modulates development, but not virulence, of the plant pathogen Streptomyces scabies. Mol. Plant Pathol 14:2119–30
    [Google Scholar]
  53. 53. 
    Galis I, Bilyeu KD, Godinho MJG, Jameson PE 2005. Expression of three Arabidopsis cytokinin oxidase/dehydrogenase promoter::GUS chimeric constructs in tobacco: response to developmental and biotic factors. Plant Growth Regul 45:3173–82
    [Google Scholar]
  54. 54. 
    Galis I, Bilyeu K, Wood G, Jameson PE 2005. Rhodococcus fascians: shoot proliferation without elevated cytokinins?. Plant Growth Regul 46:2109–15
    [Google Scholar]
  55. 55. 
    Gartemann K-H, Abt B, Bekel T, Burger A, Engemann J et al. 2008. The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J. Bacteriol. 190:62138–49
    [Google Scholar]
  56. 56. 
    Gartemann K-H, Kirchner O, Engemann J, Gräfen I, Eichenlaub R, Burger A 2003. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J. Biotechnol 106:2–3179–91
    [Google Scholar]
  57. 57. 
    Gray J, Rustgi S, von Wettstein D, Reinbothe C, Reinbothe S 2016. Common functions of the chloroplast and mitochondrial co-chaperones cpDnaJL (CDF1) and mtDnaJ (PAM16) in protein import and ROS scavenging in Arabidopsis thaliana. Commun. Integr. Biol. 9:5e1119343
    [Google Scholar]
  58. 58. 
    Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R 2016. ESX secretion systems: mycobacterial evolution to counter host immunity. Nat. Rev. Microbiol. 14:11677–91
    [Google Scholar]
  59. 59. 
    Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S et al. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J. Biol. Chem 282:4432338–48
    [Google Scholar]
  60. 60. 
    Harveson RM, Schwartz HF, Urrea CA, Yonts CD 2015. Bacterial wilt of dry-edible beans in the Central High Plains of the U.S.: past, present, and future. Plant Dis 99:121665–77
    [Google Scholar]
  61. 61. 
    Healy FG, Wach M, Krasnoff SB, Gibson DM, Loria R 2000. The txtAB genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. Mol. Microbiol. 38:4794–804
    [Google Scholar]
  62. 62. 
    Helgeson JP, Leonard NJ. 1966. Cytokinins: identification of compounds isolated from Corynebacterium fascians. PNAS 56:160–63
    [Google Scholar]
  63. 63. 
    Hong CE, Jeong H, Jo SH, Jeong JC, Kwon S-Y et al. 2016. A leaf-inhabiting endophytic bacterium, Rhodococcus sp. KB6, enhances sweet potato resistance to black rot disease caused by Ceratocystis fimbriata. J. Microbiol. Biotechnol 26:3488–92
    [Google Scholar]
  64. 64. 
    Huang Y, Chen X, Liu Y, Roth C, Copeland C et al. 2013. Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nat. Commun. 4:2558
    [Google Scholar]
  65. 65. 
    Hwang IS, Oh E-J, Kim D, Oh C-S 2018. Multiple plasmid-borne virulence genes of Clavibacter michiganensis ssp. capsici critical for disease development in pepper. New Phytol 217:31177–89
    [Google Scholar]
  66. 66. 
    Jahr H, Dreier J, Meletzus D, Bahro R, Eichenlaub R 2000. The endo-beta-1,4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Mol. Plant-Microbe Interact. 13:7703–14
    [Google Scholar]
  67. 67. 
    Jankute M, Cox JAG, Harrison J, Besra GS 2015. Assembly of the mycobacterial cell wall. Annu. Rev. Microbiol. 69:405–23
    [Google Scholar]
  68. 68. 
    Johnson EG, Joshi MV, Gibson DM, Loria R 2007. Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species. Physiol. Mol. Plant Pathol. 71:1–318–25
    [Google Scholar]
  69. 69. 
    Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:7117323–29
    [Google Scholar]
  70. 70. 
    Joshi MV, Bignell DRD, Johnson EG, Sparks JP, Gibson DM, Loria R 2007. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol. Microbiol 66:3633–42
    [Google Scholar]
  71. 71. 
    Joshi MV, Loria R. 2007. Streptomyces turgidiscabies possesses a functional cytokinin biosynthetic pathway and produces leafy galls. Mol. Plant-Microbe Interact. 20:7751–58
    [Google Scholar]
  72. 72. 
    Jourdan S, Francis IM, Deflandre B, Loria R, Rigali S 2017. Tracking the subtle mutations driving host sensing by the plant pathogen Streptomyces scabies. mSphere 2:2e00367–16
    [Google Scholar]
  73. 73. 
    Jourdan S, Francis IM, Kim MJ, Salazar JJC, Planckaert S et al. 2016. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci. Rep. 6:27144
    [Google Scholar]
  74. 74. 
    Kabelka E, Franchino B, Francis DM 2002. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:5504–10
    [Google Scholar]
  75. 75. 
    Kaneshiro WS, Mizumoto CY, Alvarez AM 2006. Differentiation of Clavibacter michiganensis subsp. michiganensis from seed-borne saprophytes using ELISA, Biolog and 16S rDNA sequencing. Eur. J. Plant Pathol. 116:145–56
    [Google Scholar]
  76. 76. 
    Kang S-M, Asaf S, Kim S-J, Yun B-W, Lee I-J 2016. Complete genome sequence of plant growth-promoting bacterium Leifsonia xyli SE134, a possible gibberellin and auxin producer. J. Biotechnol. 239:34–38
    [Google Scholar]
  77. 77. 
    Kaup O, Gräfen I, Zellermann E-M, Eichenlaub R, Gartemann K-H 2005. Identification of a tomatinase in the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382. Mol. Plant-Microbe Interact. 18:101090–98
    [Google Scholar]
  78. 78. 
    Kers JA, Cameron KD, Joshi MV, Bukhalid RA, Morello JE et al. 2005. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Mol. Microbiol. 55:41025–33
    [Google Scholar]
  79. 79. 
    Kers JA, Wach MJ, Krasnoff SB, Widom J, Cameron KD et al. 2004. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. Nature 429:698779–82
    [Google Scholar]
  80. 80. 
    Khatri BB, Tegg RS, Brown PH, Wilson CR 2011. Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabies-induced responses in the potato periderm. Plant Pathol 60:4776–86
    [Google Scholar]
  81. 81. 
    Kieber JJ, Schaller GE. 2014. Cytokinins. Arabidopsis Book 12:e0168
    [Google Scholar]
  82. 82. 
    Klämbt D, Thies G, Skoog F 1966. Isolation of cytokinins from Corynebacterium fascians. PNAS 56:152–59
    [Google Scholar]
  83. 83. 
    Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G et al. 2012. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:71378–90
    [Google Scholar]
  84. 84. 
    Konstantinidis KT, Tiedje JM. 2005. Genomic insights that advance the species definition for prokaryotes. PNAS 102:72567–72
    [Google Scholar]
  85. 85. 
    Kowalski MC, Cahill D, Doran TJ, Colegate SM 2007. Development and application of polymerase chain reaction-based assays for Rathayibacter toxicus and a bacteriophage associated with annual ryegrass (Lolium rigidum) toxicity. Aust. J. Exp. Agric. 47:2177–83
    [Google Scholar]
  86. 86. 
    Larkin MJ, De Mot R, Kulakov LA, Nagy I 1998. Applied aspects of Rhodococcus genetics. Antonie van Leeuwenhoek 74:1–3133–53
    [Google Scholar]
  87. 87. 
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J et al. 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:6250860–64
    [Google Scholar]
  88. 88. 
    Letek M, González P, Macarthur I, Rodríguez H, Freeman TC et al. 2010. The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLOS Genet 6:9e1001145
    [Google Scholar]
  89. 89. 
    Li X, Tambong J, Yuan KX, Chen W, Xu H et al. 2018. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses. Int. J. Syst. Evol. Microbiol. 68:1234–40
    [Google Scholar]
  90. 90. 
    Loria R, Bignell DRD, Moll S, Huguet-Tapia JC, Joshi MV et al. 2008. Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie van Leeuwenhoek 94:13–10
    [Google Scholar]
  91. 91. 
    Lu Y, Ishimaru CA, Glazebrook J, Samac DA 2018. Comparative genomic analyses of Clavibacter michiganensis subsp. insidiosus and pathogenicity on Medicago truncatula. Phytopathology 108:2172–85
    [Google Scholar]
  92. 92. 
    Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:740986–90
    [Google Scholar]
  93. 93. 
    Matsubara S, Armstrong DJ, Skoog F 1968. Cytokinins in tRNA of Corynebacterium fascians. Plant Physiol 43:3451–53
    [Google Scholar]
  94. 94. 
    McCann HC, Nahal H, Thakur S, Guttman DS 2012. Identification of innate immunity elicitors using molecular signatures of natural selection. PNAS 109:114215–20
    [Google Scholar]
  95. 95. 
    Meletzus D, Bermphol A, Dreier J, Eichenlaub R 1993. Evidence for plasmid-encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382. J. Bacteriol. 175:72131–36
    [Google Scholar]
  96. 96. 
    Michalke A, Galla H-J, Steinem C 2001. Channel activity of a phytotoxin of Clavibacter michiganense ssp. nebraskense in tethered membranes. Eur. Biophys. J. 30:6421–29
    [Google Scholar]
  97. 97. 
    Mills L, Leaman TM, Taghavi SM, Shackel L, Dominiak BC et al. 2001. Leifsonia xyli-like bacteria are endophytes of grasses in eastern Australia. Australas. Plant Pathol. 30:2145–51
    [Google Scholar]
  98. 98. 
    Murray TD, Schroeder BK, Schneider WL, Luster DG, Sechler A et al. 2017. Rathayibacter toxicus, other Rathayibacter species inducing bacterial head blight of grasses, and the potential for livestock poisonings. Phytopathology 107:7804–15
    [Google Scholar]
  99. 99. 
    Nissinen R, Xia Y, Mattinen L, Ishimaru CA, Knudson DL et al. 2009. The putative secreted serine protease Chp-7 is required for full virulence and induction of a nonhost hypersensitive response by Clavibacter michiganensis subsp. sepedonicus. Mol. Plant-Microbe Interact. 22:7809–19
    [Google Scholar]
  100. 100. 
    Ophel KM, Bird AF, Kerr A 1993. Association of bacteriophage particles with toxin production by Clavibacter toxicus, the causal agent of annual ryegrass toxicity. Phytopathology 83:6676–81
    [Google Scholar]
  101. 101. 
    Padilla-Reynaud R, Simao-Beaunoir A-M, Lerat S, Bernards MA, Beaulieu C 2015. Suberin regulates the production of cellulolytic enzymes in Streptomyces scabies, the causal agent of potato common scab. Microbes Environ 30:3245–53
    [Google Scholar]
  102. 102. 
    Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N et al. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35:132–40
    [Google Scholar]
  103. 103. 
    Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L et al. 2009. Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. PNAS 106:3929–34
    [Google Scholar]
  104. 104. 
    Pertry I, Václavíková K, Gemrotová M, Spíchal L, Galuszka P et al. 2010. Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. Mol. Plant-Microbe Interact. 23:91164–74
    [Google Scholar]
  105. 105. 
    Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347–75
    [Google Scholar]
  106. 106. 
    Price NPJ, Tsvetanova B. 2007. Biosynthesis of the tunicamycins: a review. J. Antibiot. 60:8485–91
    [Google Scholar]
  107. 107. 
    Putnam ML, Miller ML. 2007. Rhodococcus fascians in herbaceous perennials. Plant Dis 91:91064–76
    [Google Scholar]
  108. 108. 
    Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196:122210–15
    [Google Scholar]
  109. 109. 
    Rajaonson S, Vandeputte OM, Vereecke D, Kiendrebeogo M, Ralambofetra E et al. 2011. Virulence quenching with a prenylated isoflavanone renders the Malagasy legume Dalbergia pervillei resistant to Rhodococcus fascians. Environ. Microbiol 13:51236–52
    [Google Scholar]
  110. 110. 
    Rathbone MP, Hall RH. 1972. Concerning the presence of the cytokinin, N6-(Δ2-isopentnyl) adenine, in cultures of Corynebacterium fascians. Planta 108:293–102
    [Google Scholar]
  111. 111. 
    Riley IT, McKay AC. 1991. Inoculation of Lolium rigidum with Clavibacter sp., the toxigenic bacteria associated with annual ryegrass toxicity. J. Appl. Bacteriol. 71:302–6
    [Google Scholar]
  112. 112. 
    Savidor A, Teper D, Gartemann K-H, Eichenlaub R, Chalupowicz L et al. 2012. The Clavibacter michiganensis subsp. michiganensis-tomato interactome reveals the perception of pathogen by the host and suggests mechanisms of infection. J. Proteome Res. 11:2736–50
    [Google Scholar]
  113. 113. 
    Savory EA, Fuller SL, Weisberg AJ, Thomas WJ, Gordon MI et al. 2017. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 6:e30925
    [Google Scholar]
  114. 114. 
    Scarbrough E, Armstrong DJ, Skoog F, Frihart CR, Leonard NJ 1973. Isolation of cis-zeatin from Corynebacterium fascians cultures. PNAS 70:12 Pt 1–23825–29
    [Google Scholar]
  115. 115. 
    Scheible W-R, Fry B, Kochevenko A, Schindelasch D, Zimmerli L et al. 2003. An Arabidopsis mutant resistant to thaxtomin A, a cellulose synthesis inhibitor from Streptomyces species. Plant Cell 15:81781–94
    [Google Scholar]
  116. 116. 
    Schweizer U, Bohleber S, Fradejas-Villar N 2017. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol 14:91197–208
    [Google Scholar]
  117. 117. 
    Sechler AJ, Tancos MA, Schneider DJ, King JG, Fennessey CM et al. 2017. Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis. PLOS ONE 12:8e0183005
    [Google Scholar]
  118. 118. 
    Seipke RF, Loria R. 2008. Streptomyces scabies 87–22 possesses a functional tomatinase. J. Bacteriol. 190:237684–92
    [Google Scholar]
  119. 119. 
    Stes E, Vandeputte OM, El Jaziri M, Holsters M, Vereecke D 2011. A successful bacterial coup d'état: how Rhodococcus fascians redirects plant development. Annu. Rev. Phytopathol. 49:69–86
    [Google Scholar]
  120. 120. 
    Studholme DJ. 2016. Genome update. Let the consumer beware: Streptomyces genome sequence quality. Microb. Biotechnol. 9:13–7
    [Google Scholar]
  121. 121. 
    Sun CL, Thomas BC, Barrangou R, Banfield JF 2016. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME J 10:4858–70
    [Google Scholar]
  122. 122. 
    Tambong JT. 2017. Clavibacter michiganensis subspecies, pathogens of important agricultural crops. PLOS ONE 12:3e0172295
    [Google Scholar]
  123. 123. 
    Teakle DS, Appleton JM, Steindl DRL 1978. An anatomical basis for resistance of sugar cane to ratoon stunting disease. Physiol. Plant Pathol. 12:183–91
    [Google Scholar]
  124. 124. 
    Temmerman W, Vereecke D, Dreesen R, Van Montagu M, Holsters M, Goethals K 2000. Leafy gall formation is controlled by fasR, an AraC-type regulatory gene in Rhodococcus fascians. J. Bacteriol 182:205832–40
    [Google Scholar]
  125. 125. 
    Thapa SP, Pattathil S, Hahn MG, Jacques M-A, Gilbertson RL, Coaker G 2017. Genomic analysis of Clavibacter michiganensis reveals insight into virulence strategies and genetic diversity of a gram-positive bacterial pathogen. Mol. Plant-Microbe Interact. 30:10786–802
    [Google Scholar]
  126. 126. 
    The HC, Thanh DP, Holt KE, Thomson NR, Baker S 2016. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat. Rev. Microbiol. 14:4235–50
    [Google Scholar]
  127. 127. 
    Ulrich K, Ulrich A, Ewald D 2008. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiol. Ecol. 63:2169–80
    [Google Scholar]
  128. 128. 
    Urashima AS, Marchetti LBL. 2013. Incidence and severity of Leifsoniaxyli subsp. xyli infection of sugarcane in Sao Paulo state, Brazil. J. Phytopathol. 161:7–8478–84
    [Google Scholar]
  129. 129. 
    van der Meij A, Worsley SF, Hutchings MI, van Wezel GP 2017. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41:3392–416
    [Google Scholar]
  130. 130. 
    van der Wolf JM, van Beckhoven J, Hukkanen A, Karjalainen R, Müller P 2005. Fate of Clavibacter michiganensis ssp. sepedonicus, the causal organism of bacterial ring rot of potato, in weeds and field crops. J. Phytopathol. 153:6358–65
    [Google Scholar]
  131. 131. 
    Vega FE, Pava-Ripoll M, Posada F, Buyer JS 2005. Endophytic bacteria in Coffea arabica L. J. Basic Microbiol. 45:5371–80
    [Google Scholar]
  132. 132. 
    Vereecke D, Burssens S, Simón-Mateo C, Inzé D, Van Montagu M et al. 2000. The Rhodococcus fascians–plant interaction: morphological traits and biotechnological applications. Planta 210:2241–51
    [Google Scholar]
  133. 133. 
    Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig S 2016. Streptomyces as a plant's best friend?. FEMS Microbiol. Ecol. 92:8fiw119
    [Google Scholar]
  134. 134. 
    Vinatzer BA, Monteil CL, Clarke CR 2014. Harnessing population genomics to understand how bacterial pathogens emerge, adapt to crop hosts, and disseminate. Annu. Rev. Phytopathol. 52:19–43
    [Google Scholar]
  135. 135. 
    Vorholt JA. 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10:12828–40
    [Google Scholar]
  136. 136. 
    Wanner LA. 2009. A patchwork of Streptomyces species isolated from potato common scab lesions in North America. Am. Potato J. 86:4247–64
    [Google Scholar]
  137. 137. 
    Weinberger AD, Sun CL, Pluciński MM, Denef VJ, Thomas BC et al. 2012. Persisting viral sequences shape microbial CRISPR-based immunity. PLOS Comp. Biol. 8:4e1002475
    [Google Scholar]
  138. 138. 
    Widjaja M, Harvey KL, Hagemann L, Berry IJ, Jarocki VM et al. 2017. Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci. Rep. 7:111227
    [Google Scholar]
  139. 139. 
    Wilson CR, Tegg RS, Wilson AJ, Luckman GA, Eyles A et al. 2010. Stable and extreme resistance to common scab of potato obtained through somatic cell selection. Phytopathology 100:5460–67
    [Google Scholar]
  140. 140. 
    Yadeta KA, Thomma BPHJ. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4:97
    [Google Scholar]
  141. 141. 
    Yang J, Tauschek M, Robins-Browne RM 2011. Control of bacterial virulence by AraC-like regulators that respond to chemical signals. Trends Microbiol 19:3128–135
    [Google Scholar]
  142. 142. 
    Young AJ, Petrasovits LA, Croft BJ, Gillings M, Brumbley SM 2006. Genetic uniformity of international isolates of Leifsonia xyli subsp. xyli, causal agent of ratoon stunting disease of sugarcane. Australas. Plant Pathol. 35:5503–11
    [Google Scholar]
  143. 143. 
    Zaluga J, Van Vaerenbergh J, Stragier P, Maes M, de Vos P 2013. Genetic diversity of non-pathogenic Clavibacter strains isolated from tomato seeds. Syst. Appl. Microbiol. 36:6426–35
    [Google Scholar]
  144. 144. 
    Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L 2012. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol. Direct 7:18
    [Google Scholar]
  145. 145. 
    Zhang X, Chen M, Liang Y, Xing Y, Yang L et al. 2016. Morphological and physiological responses of sugarcane to Leifsonia xyli subsp. xyli infection. Plant Dis 100:122499–506
    [Google Scholar]
  146. 146. 
    Zhang Y, Bignell DRD, Zuo R, Fan Q, Huguet-Tapia JC et al. 2016. Promiscuous pathogenicity islands and phylogeny of pathogenic Streptomyces spp. Mol. Plant-Microbe Interact. 29:8640–50
    [Google Scholar]
  147. 147. 
    Zhang Y, Jiang G, Ding Y, Loria R 2018. Genetic background affects pathogenicity island function and pathogen emergence in Streptomyces. Mol. Plant Pathol 19:71733–41
    [Google Scholar]
  148. 148. 
    Zhang Y, Loria R. 2017. Emergence of novel pathogenic Streptomyces species by site-specific accretion and cis-mobilization of pathogenicity islands. Mol. Plant-Microbe Interact. 30:172–82
    [Google Scholar]
  149. 149. 
    Zhou B, Zhang MS, Ma X-K 2016. First report of Streptomyces bottropensis causing potato common scab in Hebei Province, China. Plant Dis 101:3502
    [Google Scholar]
  150. 150. 
    Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D et al. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68:52198–208
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-100124
Loading
/content/journals/10.1146/annurev-phyto-082718-100124
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error