1932

Abstract

The gas-phase ground-state dissociation energy () of an isolated and cold bimolecular complex is a fundamental measure of the intermolecular interaction strength between its constituents. Accurate values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parameterization of dispersion-corrected density functionals or force-field models that are used in fields ranging from crystallography to biochemistry. We review experimental measurements of the gas-phase () and () values of 55 different M⋅S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell solvent atom or molecule. The experiments employ the triply resonant SEP-R2PI laser method, which involves M-centered () electronic excitation, followed by stimulated emission spanning a range of state vibrational levels. At sufficiently high vibrational energy, vibrational predissociation of the M⋅S complex occurs. A total of 49 dissociation energies were bracketed to within ≤1.0 kJ/mol, providing a large experimental database of accurate noncovalent interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-050317-014224
2020-04-20
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-050317-014224.html?itemId=/content/journals/10.1146/annurev-physchem-050317-014224&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Maitland GC, Rigby M, Smith EB, Wakeham WA 1981. Intermolecular Forces: Their Origin and Determination Oxford, UK: Clarendon Press
  2. 2. 
    Stone AJ 2013. The Theory of Intermolecular Forces Oxford, UK: Oxford Univ. Press. 2nd ed
  3. 3. 
    London F 1930. Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 63:245–79
    [Google Scholar]
  4. 4. 
    Eisenschitz R, London F 1930. Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften. Z. Phys. 60:491–527
    [Google Scholar]
  5. 5. 
    Goerigk L, Grimme S 2011. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 13:6670–88
    [Google Scholar]
  6. 6. 
    Wagner JP, Schreiner P 2015. London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 54:12274–96
    [Google Scholar]
  7. 7. 
    Pimentel GC, McLellan AL 1960. The Hydrogen Bond San Francisco, CA: WH Freeman
  8. 8. 
    Karshikoff A 2006. Non-Covalent Interactions in Proteins London: Imperial College Press
  9. 9. 
    Desiraju GR, Steiner T 2001. The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford, UK: Oxford Univ. Press
  10. 10. 
    Steiner T 2002. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41:48–76
    [Google Scholar]
  11. 11. 
    Tkatchenko A, Scheffler M 2009. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102:073005
    [Google Scholar]
  12. 12. 
    Szalewicz K 2014. Determination of structure and properties of molecular crystals from first principles. Acc. Chem. Res. 47:3266–74
    [Google Scholar]
  13. 13. 
    Wormer PES, van der Avoird A 2000. Intermolecular potentials, internal motions, and spectra of van der Waals and hydrogen-bonded complexes. Chem. Rev. 100:4109–44
    [Google Scholar]
  14. 14. 
    Mons M, Dimicoli I, Piuzzi F 2002. Gas phase hydrogen-bonded complexes of aromatic molecules: photoionization and energetics. Int. Rev. Phys. Chem. 21:101–35
    [Google Scholar]
  15. 15. 
    Hobza P 2012. Calculations on noncovalent interactions and databases of benchmark interaction energies. Acc. Chem. Res. 45:663–72
    [Google Scholar]
  16. 16. 
    Sherrill CD 2013. Energy component analysis of π interactions. Acc. Chem. Res. 46:1020–28
    [Google Scholar]
  17. 17. 
    Grimme S 2006. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27:1787–99
    [Google Scholar]
  18. 18. 
    Goerigk L, Grimme S 2010. Assessment of TD-DFT methods and of various spin-scaled CIS(D) and CC2 versions for the treatment of low-lying valence excitations of large organic dyes. J. Chem. Phys. 132:184103
    [Google Scholar]
  19. 19. 
    Chai JD, Head-Gordon M 2008. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10:6615–20
    [Google Scholar]
  20. 20. 
    Grimme S, Antony J, Ehrlich S, Krieg H 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 97 elements H-Pu. J. Chem. Phys. 132:154104
    [Google Scholar]
  21. 21. 
    Zhao Y, Truhlar DG 2011. Applications and validations of the Minnesota density functionals. Chem. Phys. Lett. 502:1–13
    [Google Scholar]
  22. 22. 
    Grimme S, Hansen A, Brandenburg JG, Bannwarth C 2016. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116:5105–54
    [Google Scholar]
  23. 23. 
    Smith DGA, Burns LA, Patkowski K, Sherrill CD 2016. Revised damping parameters for the D3 dispersion correction to density functional theory. J. Phys. Chem. Lett. 7:2197–203
    [Google Scholar]
  24. 24. 
    Riley KE, Pitoňák M, Jurečka P, Hobza P 2010. Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 110:5023–63
    [Google Scholar]
  25. 25. 
    Haldar S, Gnanasekaran R, Hobza P 2015. A comparison of ab initio quantum-mechanical and experimental D0 binding energies of eleven H-bonded and eleven dispersion-bound complexes. Phys. Chem. Chem. Phys. 17:26645–52
    [Google Scholar]
  26. 26. 
    Holzer C, Klopper W 2017. Quasi-relativistic two-component computations of intermolecular dispersion energies. Mol. Phys. 115:2775–81
    [Google Scholar]
  27. 27. 
    Holzer C, Klopper W 2017. Communication: Symmetry-adapted perturbation theory with intermolecular induction and dispersion energies from the Bethe-Salpeter equation. J. Chem. Phys. 147:181101
    [Google Scholar]
  28. 28. 
    Misquitta AJ, Szalewicz K 2005. Symmetry-adapted perturbation-theory calculations of intermolecular forces employing density-functional description of monomers. J. Chem. Phys. 122:214109
    [Google Scholar]
  29. 29. 
    Szalewicz K 2012. Symmetry-adapted perturbation theory of intermolecular forces. WIREs Comput. Mol. Sci. 2:254–72
    [Google Scholar]
  30. 30. 
    Parrish RM, Parker TM, Sherrill CD 2014. Chemical assignment of symmetry-adapted perturbation theory interaction energy components: the functional-group SAPT partition. J. Chem. Theory Comput. 10:4417–31
    [Google Scholar]
  31. 31. 
    Jansen G 2014. Symmetry-adapted perturbation theory based on density functional theory for noncovalent interactions. WIREs Comput. Mol. Sci. 4:127–44
    [Google Scholar]
  32. 32. 
    Taylor DE, Angyan JG, Galli G, Zhang C, Gygi F et al. 2016. Blind test of density-functional-based methods on intermolecular interaction energies. J. Chem. Phys. 145:124105
    [Google Scholar]
  33. 33. 
    Mata RA, Suhm MA 2017. Benchmarking quantum chemical methods: Are we heading in the right direction?. Angew. Chem. Int. Ed. 56:11011–18
    [Google Scholar]
  34. 34. 
    Poblotzki A, Gottschalk HC, Suhm M 2017. Tipping the scales: spectroscopic tools for intermolecular energy balances. J. Phys. Chem. Lett. 8:5656–65
    [Google Scholar]
  35. 35. 
    Bernhard D, Dietrich F, Fatima M, Pérez C, Gottschalk HC et al. 2018. The phenyl vinyl ether–methanol complex: a model system for quantum chemistry benchmarking. Beilstein J. Org. Chem. 14:1642–54
    [Google Scholar]
  36. 36. 
    Gottschalk HC, Poblotzki A, Suhm MA, Al-Mogren MM, Antony J et al. 2018. The furan microsolvation blind challenge for quantum chemical methods: first steps. J. Chem. Phys. 148:014301
    [Google Scholar]
  37. 37. 
    Frey JA, Holzer C, Klopper W, Leutwyler S 2016. Experimental and theoretical determination of dissociation energies of dispersion-dominated aromatic molecular complexes. Chem. Rev. 116:5614
    [Google Scholar]
  38. 38. 
    Neusser HJ, Krause H 1994. Binding energy and structure of van der Waals complexes of benzene. Chem. Rev. 94:1829–43
    [Google Scholar]
  39. 39. 
    Braun JE, Mehnert T, Neusser HJ 2000. Binding energy of van der Waals- and hydrogen-bonded clusters by threshold ionization techniques. Int. J. Mass Spectrom. 203:1–18
    [Google Scholar]
  40. 40. 
    Bürgi T, Droz T, Leutwyler S 1994. Ground-state binding energy and vibrations of the carbazole-Ar van der Waals complex by pump/dump-R2PI measurements. Chem. Phys. Lett. 225:351–58
    [Google Scholar]
  41. 41. 
    Bürgi T, Droz T, Leutwyler S 1995. Binding energies of carbazole-S van der Waals complexes (S = N2, CO, and CH4). J. Chem. Phys. 103:7228–39
    [Google Scholar]
  42. 42. 
    Droz T, Bürgi T, Leutwyler S 1995. Van der Waals binding energies and intermolecular vibrations of carbazole-R (R = Ne, Ar, Kr, Xe). J. Chem. Phys. 103:4035–45
    [Google Scholar]
  43. 43. 
    Droz T, Bürgi T, Leutwyler S 1995. Spectroscopy and dynamics of clusters and nonrigid molecules: experiment and theory. State-selective analysis of ground-state vibrational predissociation product of an aromatic van der Waals complex. Ber. Bunsenges. Phys. Chem. 99:429–33
    [Google Scholar]
  44. 44. 
    Wickleder C, Droz T, Bürgi T, Leutwyler S 1997. Accurate intermolecular binding energies of 1-naphthol to benzene and cyclohexane. Chem. Phys. Lett. 264:257–64
    [Google Scholar]
  45. 45. 
    Wickleder C, Henseler D, Leutwyler S 2002. Accurate dissociation energies of OH⋅⋅⋅O hydrogen-bonded 1-naphthol solvent complexes. J. Chem. Phys. 116:1850–57
    [Google Scholar]
  46. 46. 
    Bellm SM, Gascooke JR, Lawrance WD 2000. The dissociation energy of van der Waals complexes determined by velocity map imaging: values for S0 and S1p-difluorobenzene–Ar and D0 (p-difluorobenzene–Ar)+. Chem. Phys. Lett. 330:103–9
    [Google Scholar]
  47. 47. 
    Bellm SM, Moulds RJ, Lawrance WD 2001. The binding energies of p-difluorobenzene-Ar,-Kr measured by velocity map imaging: limitations of dispersed fluorescence in determining binding energies. J. Chem. Phys. 115:10709–17
    [Google Scholar]
  48. 48. 
    Sampson RK, Lawrance WD 2003. The dissociation energy of the benzene–argon van der Waals complex determined by velocity map imaging. Aust. J. Chem. 56:275–77
    [Google Scholar]
  49. 49. 
    Wright DS, Holmes-Ross HL, Lawrance WD 2007. Dissociation of the NO-CH4 van der Waals complex: binding energy and correlated motion of the molecular fragments. Chem. Phys. Lett. 435:19–23
    [Google Scholar]
  50. 50. 
    Bellm SM, Moulds RJ, van Leeuwen MP, Lawrance WD 2008. A velocity map ion imaging study of difluorobenzene-water complexes: binding energies and recoil distributions. J. Chem. Phys. 128:114314
    [Google Scholar]
  51. 51. 
    Pietraperzia G, Pasquini M, Schiccheri N, Piani G, Becucci M et al. 2009. The gas phase anisole dimer: a combined high-resolution spectroscopy and computational study of a stacked molecular system. J. Phys. Chem. A 113:14343–51
    [Google Scholar]
  52. 52. 
    Mazzoni F, Pasquini M, Pietraperzia G, Becucci M 2013. Binding energy determination in a π-stacked aromatic cluster: the anisole dimer. Phys. Chem. Chem. Phys. 15:11268–74
    [Google Scholar]
  53. 53. 
    Řezáč J, Nachtigallová D, Mazzoni F, Pasquini M, Pietraperzia G et al. 2015. Binding energies of the π-stacked anisole dimer: new molecular beam-laser spectroscopy experiments and CCSD(T) calculations. Chem. Eur. J. 21:6740–46
    [Google Scholar]
  54. 54. 
    Makuzava JT, Kokkin D, Loman JI, Reid SA 2019. C–H/π and C–H–O interactions in concert: a study of the anisole–methane complex using resonant ionization and velocity mapped ion imaging. J. Phys. Chem. A 123:2874–80
    [Google Scholar]
  55. 55. 
    Mollner AK, Casterline BE, Ch'ng LC, Reisler H 2009. Imaging the state-specific vibrational predissociation of the ammonia–water hydrogen-bonded dimer. J. Phys. Chem. A 113:10174–83
    [Google Scholar]
  56. 56. 
    Rocher-Casterline BE, Ch'ng LC, Mollner AK, Reisler H 2011. Communication: Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging. J. Chem. Phys. 134:211101
    [Google Scholar]
  57. 57. 
    Ch'ng LC, Samanta AK, Czakó G, Bowman JM, Reisler H 2012. Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in the water dimer. J. Am. Chem. Soc. 134:15430–35
    [Google Scholar]
  58. 58. 
    Samanta AK, Wang Y, Mancini JS, Bowman JM, Reisler H 2016. Energetics and predissociation dynamics of small water, HCl, and mixed HCl-water clusters. Chem. Rev. 116:4913–36
    [Google Scholar]
  59. 59. 
    Dai HL, Field RW 1995. Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping Singapore: World Sci
  60. 60. 
    Knochenmuss R, Sinha RK, Leutwyler S 2018. Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen. J. Chem. Phys. 148:134302
    [Google Scholar]
  61. 61. 
    Knochenmuss R, Sinha R, Leutwyler S 2019. Face, Notch or Edge? Intermolecular dissociation energies of 1-naphthol complexes with linear molecules. J. Chem. Phys. 150:234303
    [Google Scholar]
  62. 62. 
    Knochenmuss R, Maity S, Balmer F, Müller C, Leutwyler S 2018. Intermolecular dissociation energies of 1-naphthol⋅n-alkane complexes. J. Chem. Phys. 149:034306
    [Google Scholar]
  63. 63. 
    Maity S, Knochenmuss R, Holzer C, Féraud G, Frey JA et al. 2016. Accurate dissociation energies of two isomers of the 1-naphthol⋅cyclopropane complex. J. Chem. Phys. 145:164304
    [Google Scholar]
  64. 64. 
    Maity S, Ottiger P, Balmer FA, Knochenmuss R, Leutwyler S 2016. Intermolecular dissociation energies of dispersively bound 1-naphthol-cycloalkane complexes. J. Chem. Phys. 145:244314
    [Google Scholar]
  65. 65. 
    Knochenmuss R, Sinha RK, Balmer FA, Ottiger P, Leutwyler S 2020. Intermolecular dissociation energies of 1-naphthol complexes with large dispersion-energy donors: decalins and adamantane. J. Chem. Phys In press
    [Google Scholar]
  66. 66. 
    Knochenmuss R, Sinha R, Leutwyler S 2020. Intermolecular dissociation energies of 1-naphthol complexes with chloroalkenes. In preparation
    [Google Scholar]
  67. 67. 
    Knochenmuss R, Sinha RK, Poblotzki A, Den T, Leutwyler S 2018. Intermolecular dissociation energies of hydrogen-bonded 1-naphthol complexes. J. Chem. Phys. 149:204311
    [Google Scholar]
  68. 68. 
    Bürgi T, Droz T, Leutwyler S 1995. Accurate hydrogen-bonding energies between 1-naphthol and water, methanol and ammonia. Chem. Phys. Lett. 246:291–99
    [Google Scholar]
  69. 69. 
    Amirav A, Even U, Jortner J 1981. Microscopic solvation effects on excited-state energetics and dynamics of aromatic molecules in large van der Waals complexes. J. Chem. Phys. 75:2489–512
    [Google Scholar]
  70. 70. 
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA 2016. Gaussian 16, Revis. A.03. https://gaussian.com/citation_a03/
  71. 71. 
    Ohline SM, Connell LL, Joireman PW, Venturo VA, Felker PM 1992. The geometry of carbazole—(Ar)2 from rotational coherence spectroscopy. Chem. Phys. Lett. 193:335–41
    [Google Scholar]
  72. 72. 
    Humphrey SJ, Pratt DW 1996. Acid-base chemistry in the gas phase: the trans-1-naphthol⋅NH3 complex in its S0 and S1 electronic states. J. Chem. Phys. 104:8332
    [Google Scholar]
  73. 73. 
    Felker PM 1992. Rotational coherence spectroscopy: studies of the geometries of large gas-phase species by picosecond time-domain methods. J. Phys. Chem. 96:7844–57
    [Google Scholar]
  74. 74. 
    Felker PM, Zewail AH 1995. Molecular structures from ultrafast coherence spectroscopy. Femtosecond Chemistry, Vol. 1: J Manz, L Wöste193–260 Weinheim, Ger.: Wiley-VCH
    [Google Scholar]
  75. 75. 
    Quesada-Moreno MM, Obenchain DA, Schnell M 2020. Microwave spectroscopy analysis of 1-naphthol complexes with furan, dimethylfuran and thiophene. In preparation
    [Google Scholar]
  76. 76. 
    Lide DR 2004. CRC Handbook of Chemistry and Physics Boca Raton, FL: CRC Press. 85th ed
  77. 77. 
    Kim W, Lee S, Felker PM 2000. Intermolecular vibrations and asymmetric-top pendular states in 1-naphthol-H2O and -NH3. J. Chem. Phys. 112:4527–34
    [Google Scholar]
  78. 78. 
    Grimme S, Antony J, Ehrlich S, Krieg H 2017. DFT-D3—a dispersion correction for density functionals, Hartree–Fock and semi-empirical quantum chemical methods DFT-D3. https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3/
    [Google Scholar]
  79. 79. 
    Chandrasekharan V, Etters RD 1977. On the contribution of intramolecular zero point energy to the equation of state of solid H2. J. Chem. Phys. 68:4933–35
    [Google Scholar]
  80. 80. 
    Tosoni S, Sauer J 2010. Accurate quantum chemical energies for the interaction of hydrocarbons with oxide surfaces: CH4/MgO(001). Phys. Chem. Chem. Phys. 12:14330–40
    [Google Scholar]
  81. 81. 
    Suhm M, Kollipost F 2013. Femtisecond single-mole infrared spectroscopy of molecular clusters. Phys. Chem. Chem. Phys. 15:10702–21
    [Google Scholar]
  82. 82. 
    Xue Z, Suhm MA 2009. Probing the stiffness of the simplest double hydrogen bond: the symmetric hydrogen bond modes of the jet-cooled formic acid dimer. J. Chem. Phys. 131:054301
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-050317-014224
Loading
/content/journals/10.1146/annurev-physchem-050317-014224
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error