1932

Abstract

Attachment of ubiquitin (Ub) and ubiquitin-like proteins (Ubls) to cellular proteins regulates numerous cellular processes including transcription, the cell cycle, stress responses, DNA repair, apoptosis, immune responses, and autophagy, to name a few. The mechanistically parallel but functionally distinct conjugation pathways typically require the concerted activities of three types of protein: E1 Ubl-activating enzymes, E2 Ubl carrier proteins, and E3 Ubl ligases. E1 enzymes initiate pathway specificity for each cascade by recognizing and activating cognate Ubls, followed by catalyzing Ubl transfer to cognate E2 protein(s). Under certain circumstances, the E2 Ubl complex can direct ligation to the target protein, but most often requires the cooperative activity of E3 ligases. Reviewed here are recent structural and functional studies that improve our mechanistic understanding of E1-, E2-, and E3-mediated Ubl conjugation.

Keyword(s): E1E2E3ligaseubiquitinubiquitin-like protein
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-051013-022958
2014-05-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/43/1/annurev-biophys-051013-022958.html?itemId=/content/journals/10.1146/annurev-biophys-051013-022958&mimeType=html&fmt=ahah

Literature Cited

  1. Aravind L, Koonin EV. 1.  2000. The U box is a modified RING finger—a common domain in ubiquitination. Curr. Biol. 10:R132–34 [Google Scholar]
  2. Benirschke RC, Thompson JR, Nomine Y, Wasielewski E, Juranic N. 2.  et al. 2010. Molecular basis for the association of human E4B U box ubiquitin ligase with E2-conjugating enzymes UbcH5c and Ubc4. Structure 18:955–65 [Google Scholar]
  3. Berndsen CE, Wiener R, Yu IW, Ringel AE, Wolberger C. 3.  2013. A conserved asparagine has a structural role in ubiquitin-conjugating enzymes. Nat. Chem. Biol. 9:154–56 [Google Scholar]
  4. Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. 4.  2002. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108:345–56 [Google Scholar]
  5. Boh BK, Smith PG, Hagen T. 5.  2011. Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. J. Mol. Biol. 409:136–45 [Google Scholar]
  6. Bossis G, Melchior F. 6.  2006. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21:349–57 [Google Scholar]
  7. Bracher PJ, Snyder PW, Bohall BR, Whitesides GM. 7.  2011. The relative rates of thiol-thioester exchange and hydrolysis for alkyl and aryl thioalkanoates in water. Orig. Life Evol. Biosph. 41:399–412 [Google Scholar]
  8. Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ. 8.  et al. 2010. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol. Cell 37:102–11 [Google Scholar]
  9. Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE. 9.  2006. A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21:873–80 [Google Scholar]
  10. Calabrese MF, Scott DC, Duda DM, Grace CR, Kurinov I. 10.  et al. 2011. A RING E3-substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases. Nat. Struct. Mol. Biol. 18:947–49 [Google Scholar]
  11. Capili AD, Edghill EL, Wu K, Borden KL. 11.  2004. Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. J. Mol. Biol. 340:1117–29 [Google Scholar]
  12. Capili AD, Lima CD. 12.  2007. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J. Mol. Biol. 369:608–18 [Google Scholar]
  13. Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W. 13.  et al. 2011. An allosteric inhibitor of the human cdc34 ubiquitin-conjugating enzyme. Cell 145:1075–87 [Google Scholar]
  14. Chaugule VK, Burchell L, Barber KR, Sidhu A, Leslie SJ. 14.  et al. 2011. Autoregulation of Parkin activity through its ubiquitin-like domain. EMBO J. 30:2853–67 [Google Scholar]
  15. Das R, Liang YH, Mariano J, Li J, Huang T. 15.  et al. 2013. Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J. 32:2504–16 [Google Scholar]
  16. Das R, Mariano J, Tsai YC, Kalathur RC, Kostova Z. 16.  et al. 2009. Allosteric activation of E2-RING finger-mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell 34:674–85 [Google Scholar]
  17. Deshaies RJ. 17.  1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15:435–67 [Google Scholar]
  18. Deshaies RJ, Emberley ED, Saha A. 18.  2010. Control of Cullin-RING ubiquitin ligase activity by Nedd8. Subcell. Biochem. 54:41–56 [Google Scholar]
  19. Deshaies RJ, Joazeiro CA. 19.  2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78:399–434 [Google Scholar]
  20. Dominguez C, Bonvin AM, Winkler GS, van Schaik FM, Timmers HT, Boelens R. 20.  2004. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 12:633–44 [Google Scholar]
  21. Dou H, Buetow L, Hock A, Sibbet GJ, Vousden KH, Huang DT. 21.  2012. Structural basis for autoinhibition and phosphorylation-dependent activation of c-Cbl. Nat. Struct. Mol. Biol. 19:184–92 [Google Scholar]
  22. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. 22.  2012. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19:876–83 [Google Scholar]
  23. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. 23.  2013. Essentiality of a non-RING element in priming donor ubiquitin for catalysis by a monomeric E3. Nat. Struct. Mol. Biol. 20:982–86 [Google Scholar]
  24. Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. 24.  2008. Structural insights into NEDD8 activation of Cullin-RING ligases: conformational control of conjugation. Cell 134:995–1006 [Google Scholar]
  25. Duda DM, Olszewski JL, Schuermann JP, Kurinov I, Miller DJ. 25.  et al. 2013. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21:1030–41 [Google Scholar]
  26. Duda DM, Scott DC, Calabrese MF, Zimmerman ES, Zheng N, Schulman BA. 26.  2011. Structural regulation of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 21:257–64 [Google Scholar]
  27. Duda DM, van Waardenburg RC, Borg LA, McGarity S, Nourse A. 27.  et al. 2007. Structure of a SUMO-binding-motif mimic bound to Smt3p-Ubc9p: conservation of a non-covalent ubiquitin-like protein-E2 complex as a platform for selective interactions within a SUMO pathway. J. Mol. Biol. 369:619–30 [Google Scholar]
  28. Duda DM, Walden H, Sfondouris J, Schulman BA. 28.  2005. Structural analysis of Escherichia coli ThiF. J. Mol. Biol. 349:774–86 [Google Scholar]
  29. Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C. 29.  2006. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13:915–20 [Google Scholar]
  30. Gallagher E, Gao M, Liu YC, Karin M. 30.  2006. Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc. Natl. Acad. Sci. USA 103:1717–22 [Google Scholar]
  31. Garber K. 31.  2005. Missing the target: Ubiquitin ligase drugs stall. J. Natl. Cancer Inst. 97:166–67 [Google Scholar]
  32. Gareau JR, Lima CD. 32.  2010. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11:861–71 [Google Scholar]
  33. Gareau JR, Reverter D, Lima CD. 33.  2012. Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2. J. Biol. Chem. 287:4740–51 [Google Scholar]
  34. Gavin JM, Chen JJ, Liao H, Rollins N, Yang X. 34.  et al. 2012. Mechanistic studies on activation of ubiquitin and di-ubiquitin-like protein, FAT10, by ubiquitin-like modifier activating enzyme 6, Uba6. J. Biol. Chem. 287:15512–22 [Google Scholar]
  35. Geng J, Klionsky DJ. 35.  2008. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 9:859–64 [Google Scholar]
  36. Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J. 36.  et al. 2004. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119:517–28 [Google Scholar]
  37. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D. 37.  et al. 2001. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer–derived mutation. J. Biol. Chem. 276:14537–40 [Google Scholar]
  38. Hong SB, Kim BW, Lee KE, Kim SW, Jeon H. 38.  et al. 2011. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18:1323–30 [Google Scholar]
  39. Hua Z, Vierstra RD. 39.  2011. The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol. 62:299–334 [Google Scholar]
  40. Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA. 40.  2007. Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity. Nature 445:394–98 [Google Scholar]
  41. Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM. 41.  et al. 1999. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–26 [Google Scholar]
  42. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. 42.  1999. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–12 [Google Scholar]
  43. Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL. 43.  et al. 2012. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat. Struct. Mol. Biol. 19:1242–49 [Google Scholar]
  44. Kamadurai HB, Qiu Y, Deng A, Harrison JS, Macdonald C. 44.  et al. 2013. Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. eLIFE 2:e00828 [Google Scholar]
  45. Kamadurai HB, Souphron J, Scott DC, Duda DM, Miller DJ. 45.  et al. 2009. Insights into ubiquitin transfer cascades from a structure of a UbcH5B∼ubiquitin-HECT(NEDD4L) complex. Mol. Cell 36:1095–102 [Google Scholar]
  46. Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW. 46.  1999. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev. 13:2928–33 [Google Scholar]
  47. Kim HC, Huibregtse JM. 47.  2009. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29:3307–18 [Google Scholar]
  48. Kim HC, Steffen AM, Oldham ML, Chen J, Huibregtse JM. 48.  2011. Structure and function of a HECT domain ubiquitin-binding site. EMBO Rep. 12:334–41 [Google Scholar]
  49. Klug H, Xaver M, Chaugule VK, Koidl S, Mittler G. 49.  et al. 2013. Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in Saccharomyces cerevisiae. Mol. Cell 50:625–36 [Google Scholar]
  50. Knipscheer P, van Dijk WJ, Olsen JV, Mann M, Sixma TK. 50.  2007. Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation. EMBO J. 26:2797–807 [Google Scholar]
  51. Kumar B, Lecompte KG, Klein JM, Haas AL. 51.  2010. Ser(120) of Ubc2/Rad6 regulates ubiquitin-dependent N-end rule targeting by E3α/Ubr1. J. Biol. Chem. 285:41300–9 [Google Scholar]
  52. Kurz T, Chou YC, Willems AR, Meyer-Schaller N, Hecht ML. 52.  et al. 2008. Dcn1 functions as a scaffold-type E3 ligase for cullin neddylation. Mol. Cell 29:23–35 [Google Scholar]
  53. Kurz T, Ozlu N, Rudolf F, O'Rourke SM, Luke B. 53.  et al. 2005. The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature 435:1257–61 [Google Scholar]
  54. Lake MW, Wuebbens MM, Rajagopalan KV, Schindelin H. 54.  2001. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414:325–29 [Google Scholar]
  55. Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ. 55.  2013. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J. Cell Biol. 200:163–72 [Google Scholar]
  56. Lee I, Schindelin H. 56.  2008. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134:268–78 [Google Scholar]
  57. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL. 57.  2008. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15:841–48 [Google Scholar]
  58. Liu J, Nussinov R. 58.  2011. Flexible cullins in cullin-RING E3 ligases allosterically regulate ubiquitination. J. Biol. Chem. 286:40934–42 [Google Scholar]
  59. Liu Y, Mimura S, Kishi T, Kamura T. 59.  2009. A longevity protein, Lag2, interacts with SCF complex and regulates SCF function. EMBO J. 28:3366–77 [Google Scholar]
  60. Lois LM, Lima CD. 60.  2005. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24:439–51 [Google Scholar]
  61. Lorenz S, Cantor AJ, Rape M, Kuriyan J. 61.  2013. Macromolecular juggling by ubiquitylation enzymes. BMC Biol. 11:65 [Google Scholar]
  62. Lu X, Olsen SK, Capili AD, Cisar JS, Lima CD, Tan DS. 62.  2010. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. J. Am. Chem. Soc. 132:1748–49 [Google Scholar]
  63. Mace PD, Linke K, Feltham R, Schumacher FR, Smith CA. 63.  et al. 2008. Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem. 283:31633–40 [Google Scholar]
  64. Maspero E, Mari S, Valentini E, Musacchio A, Fish A. 64.  et al. 2011. Structure of the HECT:ubiquitin complex and its role in ubiquitin chain elongation. EMBO Rep. 12:342–49 [Google Scholar]
  65. Maspero E, Valentini E, Mari S, Cecatiello V, Soffientini P. 65.  et al. 2013. Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat. Struct. Mol. Biol. 20:696–701 [Google Scholar]
  66. Merlet J, Burger J, Gomes JE, Pintard L. 66.  2009. Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell. Mol. Life Sci. 66:1924–38 [Google Scholar]
  67. Metzger MB, Liang YH, Das R, Mariano J, Li S. 67.  et al. 2013. A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Mol. Cell 50:516–27 [Google Scholar]
  68. Monda JK, Scott DC, Miller DJ, Lydeard J, King D. 68.  et al. 2013. Structural conservation of distinctive N-terminal acetylation-dependent interactions across a family of mammalian NEDD8 ligation enzymes. Structure 21:42–53 [Google Scholar]
  69. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K. 69.  et al. 2011. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44:462–75 [Google Scholar]
  70. Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. 70.  2010. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 463:906–12 [Google Scholar]
  71. Olsen SK, Lima CD. 71.  2013. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Mol. Cell 49:884–96 [Google Scholar]
  72. Özkan E, Yu H, Deisenhofer J. 72.  2005. Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc. Natl. Acad. Sci. USA 102:18890–95 [Google Scholar]
  73. Page RC, Pruneda JN, Amick J, Klevit RE, Misra S. 73.  2012. Structural insights into the conformation and oligomerization of E2∼ubiquitin conjugates. Biochemistry 51:4175–87 [Google Scholar]
  74. Petroski MD, Deshaies RJ. 74.  2005. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6:9–20 [Google Scholar]
  75. Petroski MD, Deshaies RJ. 75.  2005. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 123:1107–20 [Google Scholar]
  76. Pichler A, Gast A, Seeler JS, Dejean A, Melchior F. 76.  2002. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109–20 [Google Scholar]
  77. Pichler A, Knipscheer P, Saitoh H, Sixma TK, Melchior F. 77.  2004. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat. Struct. Mol. Biol. 11:984–91 [Google Scholar]
  78. Plechanovova A, Jaffray EG, Tatham MH, Naismith JH, Hay RT. 78.  2012. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489:115–20 [Google Scholar]
  79. Pruneda JN, Littlefield PJ, Soss SE, Nordquist KA, Chazin WJ. 79.  et al. 2012. Structure of an E3:E2∼Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47:933–42 [Google Scholar]
  80. Pruneda JN, Stoll KE, Bolton LJ, Brzovic PS, Klevit RE. 80.  2011. Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme∼ubiquitin conjugate. Biochemistry 50:1624–33 [Google Scholar]
  81. Reverter D, Lima CD. 81.  2005. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–92 [Google Scholar]
  82. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E. 82.  et al. 2013. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Nat. Commun. 4:1982 [Google Scholar]
  83. Rodrigo-Brenni MC, Foster SA, Morgan DO. 83.  2010. Catalysis of lysine 48-specific ubiquitin chain assembly by residues in E2 and ubiquitin. Mol. Cell 39:548–59 [Google Scholar]
  84. Ronchi VP, Klein JM, Haas AL. 84.  2013. E6AP/UBE3A ubiquitin ligase harbors two E2∼ubiquitin binding sites. J. Biol. Chem. 288:10349–60 [Google Scholar]
  85. Sadowski M, Suryadinata R, Lai X, Heierhorst J, Sarcevic B. 85.  2010. Molecular basis for lysine specificity in the yeast ubiquitin-conjugating enzyme Cdc34. Mol. Cell. Biol. 30:2316–29 [Google Scholar]
  86. Saha A, Deshaies RJ. 86.  2008. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32:21–31 [Google Scholar]
  87. Saha A, Lewis S, Kleiger G, Kuhlman B, Deshaies RJ. 87.  2011. Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell 42:75–83 [Google Scholar]
  88. Saitoh H, Pu R, Cavenagh M, Dasso M. 88.  1997. RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc. Natl. Acad. Sci. USA 94:3736–41 [Google Scholar]
  89. Saitoh H, Sparrow DB, Shiomi T, Pu RT, Nishimoto T. 89.  et al. 1998. Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr. Biol. 8:121–24 [Google Scholar]
  90. Sampson DA, Wang M, Matunis MJ. 90.  2001. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276:21664–69 [Google Scholar]
  91. Sarcevic B, Mawson A, Baker RT, Sutherland RL. 91.  2002. Regulation of the ubiquitin-conjugating enzyme hHR6A by CDK-mediated phosphorylation. EMBO J. 21:2009–18 [Google Scholar]
  92. Schrödinger LLC. 92.  2010. The PyMOL Molecular Graphics System Version 1.3r1. http://www.pymol.org/pymol
  93. Schulman BA, Harper JW. 93.  2009. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10:319–31 [Google Scholar]
  94. Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA. 94.  2011. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334:674–78 [Google Scholar]
  95. Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW. 95.  et al. 2010. A dual E3 mechanism for Rub1 ligation to Cdc53. Mol. Cell 39:784–96 [Google Scholar]
  96. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S. 96.  et al. 2000. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25:302–5 [Google Scholar]
  97. Siepmann TJ, Bohnsack RN, Tokgöz Z, Baboshina OV, Haas AL. 97.  2003. Protein interactions within the N-end rule ubiquitin ligation pathway. J. Biol. Chem. 278:9448–57 [Google Scholar]
  98. Siergiejuk E, Scott DC, Schulman BA, Hofmann K, Kurz T, Peter M. 98.  2009. Cullin neddylation and substrate-adaptors counteract SCF inhibition by the CAND1-like protein Lag2 in Saccharomyces cerevisiae. EMBO J. 28:3845–56 [Google Scholar]
  99. Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC. 99.  et al. 1999. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284:662–65 [Google Scholar]
  100. Soss SE, Klevit RE, Chazin WJ. 100.  2013. Activation of UbcH5c∼Ub is the result of a shift in interdomain motions of the conjugate bound to U-box E3 ligase E4B. Biochemistry 52:2991–99 [Google Scholar]
  101. Spratt DE, Martinez-Torres RJ, Noh YJ, Mercier P, Manczyk N. 101.  et al. 2013. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat. Commun. 4:1983 [Google Scholar]
  102. Spratt DE, Wu K, Kovacev J, Pan ZQ, Shaw GS. 102.  2012. Selective recruitment of an E2∼ubiquitin complex by an E3 ubiquitin ligase. J. Biol. Chem. 287:17374–85 [Google Scholar]
  103. Stieglitz B, Morris-Davies AC, Koliopoulos MG, Christodoulou E, Rittinger K. 103.  2012. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep. 13:840–46 [Google Scholar]
  104. Streich FC Jr, Haas AL. 104.  2010. Activation of ubiquitin and ubiquitin-like proteins. Conjugation and Deconjugation of Ubiquitin Family Modifiers M Groettrup 1–16 Austin, TX/New York: Landes Biosci./Springer [Google Scholar]
  105. Streich FC Jr, Ronchi VP, Connick JP, Haas AL. 105.  2013. Tripartite motif ligases catalyze polyubiquitin chain formation through a cooperative allosteric mechanism. J. Biol. Chem. 288:8209–21 [Google Scholar]
  106. Suryadinata R, Holien JK, Yang G, Parker MW, Papaleo E, Sarcevic B. 106.  2013. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34. Cell Cycle 12:1732–44 [Google Scholar]
  107. Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A. 107.  et al. 2011. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44:451–61 [Google Scholar]
  108. Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT. 108.  2005. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat. Struct. Mol. Biol. 12:67–74 [Google Scholar]
  109. Tokgöz Z, Siepmann TJ, Streich F Jr, Kumar B, Klein JM, Haas AL. 109.  2012.E1–E2 interactions in ubiquitin and Nedd8 ligation pathways. J. Biol. Chem. 287:311–21 [Google Scholar]
  110. Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY. 110.  et al. 2013. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340:1451–55 [Google Scholar]
  111. Wauer T, Komander D. 111.  2013. Structure of the human Parkin ligase domain in an autoinhibited state. EMBO J. 32:2099–112 [Google Scholar]
  112. Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. 112.  2011. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474:105–8 [Google Scholar]
  113. Werner A, Flotho A, Melchior F. 113.  2012. The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol. Cell 46:287–98 [Google Scholar]
  114. Wickliffe KE, Lorenz S, Wemmer DE, Kuriyan J, Rape M. 114.  2011. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell 144:769–81 [Google Scholar]
  115. Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F. 115.  et al. 2007. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 130:651–62 [Google Scholar]
  116. Williams C, van den Berg M, Stanley WA, Wilmanns M, Distel B. 116.  2013. A disulphide bond in the E2 enzyme Pex4p modulates ubiquitin-conjugating activity. Sci. Rep. 3:2212 [Google Scholar]
  117. Williamson A, Banerjee S, Zhu X, Philipp I, Iavarone AT, Rape M. 117.  2011. Regulation of ubiquitin chain initiation to control the timing of substrate degradation. Mol. Cell 42:744–57 [Google Scholar]
  118. Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H. 118.  et al. 2012. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19:1250–56 [Google Scholar]
  119. Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H. 119.  et al. 2012. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20:1244–54 [Google Scholar]
  120. Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R, Pan ZQ. 120.  2008. Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail. Proc. Natl. Acad. Sci. USA 105:12230–35 [Google Scholar]
  121. Yin Q, Lin SC, Lamothe B, Lu M, Lo YC. 121.  et al. 2009. E2 interaction and dimerization in the crystal structure of TRAF6. Nat. Struct. Mol. Biol. 16:658–66 [Google Scholar]
  122. Yunus AA, Lima CD. 122.  2006. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 13:491–99 [Google Scholar]
  123. Yunus AA, Lima CD. 123.  2009. Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol. Cell 35:669–82 [Google Scholar]
  124. Zhang M, Windheim M, Roe SM, Peggie M, Cohen P. 124.  et al. 2005. Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20:525–38 [Google Scholar]
  125. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD. 125.  et al. 2002. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–9 [Google Scholar]
  126. Zheng N, Wang P, Jeffrey PD, Pavletich NP. 126.  2000. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–39 [Google Scholar]
  127. Zhu S, Goeres J, Sixt KM, Bekes M, Zhang XD. 127.  et al. 2009. Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. Mol. Cell 33:570–80 [Google Scholar]
  128. Zimmerman ES, Schulman BA, Zheng N. 128.  2010. Structural assembly of cullin-RING ubiquitin ligase complexes. Curr. Opin. Struct. Biol. 20:714–21 [Google Scholar]
/content/journals/10.1146/annurev-biophys-051013-022958
Loading
/content/journals/10.1146/annurev-biophys-051013-022958
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error