1932

Abstract

Histone proteins are subject to a host of posttranslational modifications (PTMs) that modulate chromatin structure and function. Such control is achieved by the direct alteration of the intrinsic physical properties of the chromatin fiber or by regulating the recruitment and activity of a host of -acting nuclear factors. The sheer number of histone PTMs presents a formidable barrier to understanding the molecular mechanisms at the heart of epigenetic regulation of eukaryotic genomes. One aspect of this multifarious problem, namely how to access homogeneously modified chromatin for biochemical studies, is well suited to the sensibilities of the organic chemist. Indeed, recent years have witnessed a critical role for synthetic protein chemistry methods in generating the raw materials needed for studying how histone PTMs regulate chromatin biochemistry. This review focuses on what is arguably the most powerful, and widely employed, of these chemical strategies, namely histone semisynthesis via the chemical ligation of peptide fragments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-060614-034429
2015-06-02
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-060614-034429.html?itemId=/content/journals/10.1146/annurev-biochem-060614-034429&mimeType=html&fmt=ahah

Literature Cited

  1. Allis CD, Jenuwein T, Reinberg D. 1.  2007. Epigenetics Cold Spring Harbor, NY: Cold Spring Harb. Lab.
  2. Kornberg RD. 2.  1977. Structure of chromatin. Annu. Rev. Biochem. 46:931–54 [Google Scholar]
  3. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. 3.  1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–60 [Google Scholar]
  4. Badeaux AI, Shi Y. 4.  2013. Emerging roles for chromatin as a signal integration and storage platform. Nat. Rev. Mol. Cell Biol. 14:211–24 [Google Scholar]
  5. Tan M, Luo H, Lee S, Jin F, Yang JS. 5.  et al. 2011. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–28 [Google Scholar]
  6. Kouzarides T. 6.  2007. Chromatin modifications and their function. Cell 128:693–705 [Google Scholar]
  7. Patel DJ, Wang Z. 7.  2013. Readout of epigenetic modifications. Annu. Rev. Biochem. 82:81–118 [Google Scholar]
  8. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE. 8.  et al. 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419:407–11 [Google Scholar]
  9. Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA. 9.  et al. 2003. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12:1577–89 [Google Scholar]
  10. Hoffman MM, Ernst J, Wilder SP, Kundaje A, Harris RS. 10.  et al. 2013. Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Res. 41:827–41 [Google Scholar]
  11. Tian Z, Tolic N, Zhao R, Moore RJ, Hengel SM. 11.  et al. 2012. Enhanced top-down characterization of histone post-translational modifications. Genome Biol. 13:R86 [Google Scholar]
  12. Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J. 12.  et al. 2012. Asymmetrically modified nucleosomes. Cell 151:181–93 [Google Scholar]
  13. Rando OJ. 13.  2012. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr. Opin. Genet. Dev. 22:148–55 [Google Scholar]
  14. Strahl BD, Allis CD. 14.  2000. The language of covalent histone modifications. Nature 403:41–45 [Google Scholar]
  15. McGinty RK, Kim J, Chatterjee C, Roeder RG, Muir TW. 15.  2008. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature 453:812–16 [Google Scholar]
  16. Sun ZW, Allis CD. 16.  2002. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–8 [Google Scholar]
  17. Huff JT, Plocik AM, Guthrie C, Yamamoto KR. 17.  2010. Reciprocal intronic and exonic histone modification regions in humans. Nat. Struct. Mol. Biol. 17:1495–99 [Google Scholar]
  18. Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD. 18.  et al. 2011. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49 [Google Scholar]
  19. Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC. 19.  et al. 2011. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471:480–85 [Google Scholar]
  20. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. 20.  2006. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–47 [Google Scholar]
  21. Wilkins BJ, Rall NA, Ostwal Y, Kruitwagen T, Hiragami-Hamada K. 21.  et al. 2014. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80 [Google Scholar]
  22. Zhou Y, Grummt I. 22.  2005. The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr. Biol. 15:1434–38 [Google Scholar]
  23. Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK. 23.  et al. 2011. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145:692–706 [Google Scholar]
  24. Tropberger P, Schneider R. 24.  2013. Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat. Struct. Mol. Biol. 20:657–61 [Google Scholar]
  25. Kebede AF, Schneider R, Daujat S. 25.  2014. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J. In press
  26. Davies N, Lindsey GG. 26.  1994. Histone H2B (and H2A) ubiquitination allows normal histone octamer and core particle reconstitution. Biochim. Biophys. Acta 1218:187–93 [Google Scholar]
  27. West MH, Bonner WM. 27.  1980. Histone 2B can be modified by the attachment of ubiquitin. Nucleic Acids Res. 8:4671–80 [Google Scholar]
  28. Wu JI, Lessard J, Crabtree GR. 28.  2009. Understanding the words of chromatin regulation. Cell 136:200–6 [Google Scholar]
  29. Nguyen UT, Bittova L, Müller MM, Fierz B, David Y. 29.  et al. 2014. Accelerated chromatin biochemistry using DNA-barcoded nucleosome libraries. Nat. Methods 11:834–40 [Google Scholar]
  30. Tang Z, Chen WY, Shimada M, Nguyen UT, Kim J. 30.  et al. 2013. SET1 and p300 act synergistically, through coupled histone modifications, in transcriptional activation by p53. Cell 154:297–310 [Google Scholar]
  31. Fierz B, Muir TW. 31.  2012. Chromatin as an expansive canvas for chemical biology. Nat. Chem. Biol. 8:417–27 [Google Scholar]
  32. Voigt P, Reinberg D. 32.  2011. Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. ChemBioChem 12:236–52 [Google Scholar]
  33. Allis CD, Muir TW. 33.  2011. Spreading chromatin into chemical biology. ChemBioChem 12:264–79 [Google Scholar]
  34. Neumann H, Peak-Chew SY, Chin JW. 34.  2008. Genetically encoding Nϵ-acetyllysine in recombinant proteins. Nat. Chem. Biol. 4:232–34 [Google Scholar]
  35. Davis L, Chin JW. 35.  2012. Designer proteins: applications of genetic code expansion in cell biology. Nat. Rev. Mol. Cell Biol. 13:168–82 [Google Scholar]
  36. Neumann H, Hancock SM, Buning R, Routh A, Chapman L. 36.  et al. 2009. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 36:153–63 [Google Scholar]
  37. Gattner MJ, Vrabel M, Carell T. 37.  2013. Synthesis of ϵ-N-propionyl-, ϵ-N-butyryl-, and ϵ-N-crotonyl-lysine containing histone H3 using the pyrrolysine system. Chem. Commun. 49:379–81 [Google Scholar]
  38. Kim CH, Kang M, Kim HJ, Chatterjee A, Schultz PG. 38.  2012. Site-specific incorporation of ϵ-N-crotonyllysine into histones. Angew. Chem. Int. Ed. 51:7246–49 [Google Scholar]
  39. Nguyen DP, Garcia Alai MM, Virdee S, Chin JW. 39.  2010. Genetically directing ϵ-N, N-dimethyl-l-lysine in recombinant histones. Chem. Biol. 17:1072–76 [Google Scholar]
  40. Park HS, Hohn MJ, Umehara T, Guo LT, Osborne EM. 40.  et al. 2011. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333:1151–54 [Google Scholar]
  41. Li X, Fekner T, Ottesen JJ, Chan MK. 41.  2009. A pyrrolysine analogue for site-specific protein ubiquitination. Angew. Chem. Int. Ed. 48:9184–87 [Google Scholar]
  42. Nguyen DP, Elliott T, Holt M, Muir TW, Chin JW. 42.  2011. Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. J. Am. Chem. Soc. 133:11418–21 [Google Scholar]
  43. Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL. 43.  et al. 2007. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–12 [Google Scholar]
  44. Chatterjee C, McGinty RK, Fierz B, Muir TW. 44.  2010. Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nat. Chem. Biol. 6:267–69 [Google Scholar]
  45. Li F, Allahverdi A, Yang R, Lua GB, Zhang X. 45.  et al. 2011. A direct method for site-specific protein acetylation. Angew. Chem. Int. Ed. 50:9611–14 [Google Scholar]
  46. Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW. 46.  2011. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat. Chem. Biol. 7:113–19 [Google Scholar]
  47. Seeliger D, Soeroes S, Klingberg R, Schwarzer D, Grubmuller H, Fischle W. 47.  2012. Quantitative assessment of protein interaction with methyl-lysine analogues by hybrid computational and experimental approaches. ACS Chem. Biol. 7:150–54 [Google Scholar]
  48. Krieger DE, Levine R, Merrifield RB, Vidali G, Allfrey VG. 48.  1974. Chemical studies of histone acetylation. Substrate specificity of a histone deacetylase from calf thymus nuclei. J. Biol. Chem. 249:332–34 [Google Scholar]
  49. Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S. 49.  et al. 2012. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat. Struct. Mol. Biol. 19:1155–60 [Google Scholar]
  50. Oliver SS, Musselman CA, Srinivasan R, Svaren JP, Kutateladze TG, Denu JM. 50.  2012. Multivalent recognition of histone tails by the PHD fingers of CHD5. Biochemistry 51:6534–44 [Google Scholar]
  51. Garske AL, Oliver SS, Wagner EK, Musselman CA, LeRoy G. 51.  et al. 2010. Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat. Chem. Biol. 6:283–90 [Google Scholar]
  52. Garske AL, Craciun G, Denu JM. 52.  2008. A combinatorial H4 tail library for exploring the histone code. Biochemistry 47:8094–102 [Google Scholar]
  53. Suka N, Suka Y, Carmen AA, Wu J, Grunstein M. 53.  2001. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8:473–79 [Google Scholar]
  54. Turner BM, Fellows G. 54.  1989. Specific antibodies reveal ordered and cell-cycle-related use of histone H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179:131–39 [Google Scholar]
  55. Smith BC, Denu JM. 55.  2007. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 46:14478–86 [Google Scholar]
  56. Smith BC, Denu JM. 56.  2007. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 282:37256–65 [Google Scholar]
  57. Jacobs SA, Khorasanizadeh S. 57.  2002. Structure of HP1 chromodomain bound to a lysine 9–methylated histone H3 tail. Science 295:2080–83 [Google Scholar]
  58. Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY. 58.  et al. 2006. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90 [Google Scholar]
  59. Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X. 59.  et al. 2005. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121:859–72 [Google Scholar]
  60. Bua DJ, Kuo AJ, Cheung P, Liu CL, Migliori V. 60.  et al. 2009. Epigenome microarray platform for proteome-wide dissection of chromatin-signaling networks. PLOS ONE 4:e6789 [Google Scholar]
  61. Shi X, Kachirskaia I, Walter KL, Kuo JH, Lake A. 61.  et al. 2007. Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36. J. Biol. Chem. 282:2450–55 [Google Scholar]
  62. Liu H, Galka M, Iberg A, Wang Z, Li L. 62.  et al. 2010. Systematic identification of methyllysine-driven interactions for histone and nonhistone targets. J. Proteome Res. 9:5827–36 [Google Scholar]
  63. Rothbart SB, Krajewski K, Strahl BD, Fuchs SM. 63.  2012. Peptide microarrays to interrogate the “histone code”. Methods Enzymol. 512:107–35 [Google Scholar]
  64. Rothbart SB, Dickson BM, Ong MS, Krajewski K, Houliston S. 64.  et al. 2013. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev. 27:1288–98 [Google Scholar]
  65. Zhang Q, Chakravarty S, Ghersi D, Zeng L, Plotnikov AN. 65.  et al. 2010. Biochemical profiling of histone binding selectivity of the yeast bromodomain family. PLOS ONE 5:e8903 [Google Scholar]
  66. Rothbart SB, Lin S, Britton LM, Krajewski K, Keogh MC. 66.  et al. 2012. Poly-acetylated chromatin signatures are preferred epitopes for site-specific histone H4 acetyl antibodies. Sci. Rep. 2:489 [Google Scholar]
  67. Hilpert K, Winkler DF, Hancock RE. 67.  2007. Peptide arrays on cellulose support: SPOT synthesis, a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nat. Protoc. 2:1333–49 [Google Scholar]
  68. Kent SB. 68.  1988. Chemical synthesis of peptides and proteins. Annu. Rev. Biochem. 57:957–89 [Google Scholar]
  69. Kim J, Kim JA, McGinty RK, Nguyen UT, Muir TW. 69.  et al. 2013. The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Mol. Cell 49:1121–33 [Google Scholar]
  70. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z. 70.  et al. 2009. RAD6-mediated transcription–coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137:459–71 [Google Scholar]
  71. Muralidharan V, Muir TW. 71.  2006. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat. Methods 3:429–38 [Google Scholar]
  72. Muir TW. 72.  2003. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72:249–89 [Google Scholar]
  73. Dawson PE, Kent SB. 73.  2000. Synthesis of native proteins by chemical ligation. Annu. Rev. Biochem. 69:923–60 [Google Scholar]
  74. Dawson PE, Muir TW, Clark-Lewis I, Kent SB. 74.  1994. Synthesis of proteins by native chemical ligation. Science 266:776–79 [Google Scholar]
  75. Muir TW, Sondhi D, Cole PA. 75.  1998. Expressed protein ligation: a general method for protein engineering. PNAS 95:6705–10 [Google Scholar]
  76. Vila-Perelló M, Muir TW. 76.  2010. Biological applications of protein splicing. Cell 143:191–200 [Google Scholar]
  77. Blaschke UK, Silberstein J, Muir TW. 77.  2000. Protein engineering by expressed protein ligation. Methods Enzymol. 328:478–96 [Google Scholar]
  78. Shogren-Knaak MA, Fry CJ, Peterson CL. 78.  2003. A native peptide ligation strategy for deciphering nucleosomal histone modifications. J. Biol. Chem. 278:15744–48 [Google Scholar]
  79. Ferreira H, Flaus A, Owen-Hughes T. 79.  2007. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J. Mol. Biol. 374:563–79 [Google Scholar]
  80. Yan LZ, Dawson PE. 80.  2001. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J. Am. Chem. Soc. 123:526–33 [Google Scholar]
  81. Wan Q, Danishefsky SJ. 81.  2007. Free-radical-based, specific desulfurization of cysteine: a powerful advance in the synthesis of polypeptides and glycopolypeptides. Angew. Chem. Int. Ed. 46:9248–52 [Google Scholar]
  82. Yang R, Pasunooti KK, Li F, Liu XW, Liu CF. 82.  2009. Dual native chemical ligation at lysine. J. Am. Chem. Soc. 131:13592–93 [Google Scholar]
  83. Malins LR, Cergol KM, Payne RJ. 83.  2013. Peptide ligation–desulfurization chemistry at arginine. ChemBioChem 14:559–63 [Google Scholar]
  84. Thompson RE, Chan B, Radom L, Jolliffe KA, Payne RJ. 84.  2013. Chemoselective peptide ligation–desulfurization at aspartate. Angew. Chem. Int. Ed. 52:9723–27 [Google Scholar]
  85. Harpaz Z, Siman P, Kumar KS, Brik A. 85.  2010. Protein synthesis assisted by native chemical ligation at leucine. ChemBioChem 11:1232–35 [Google Scholar]
  86. Chen J, Wang P, Zhu J, Wan Q, Danishefsky SJ. 86.  2010. A program for ligation at threonine sites: application to the controlled total synthesis of glycopeptides. Tetrahedron 66:2277–83 [Google Scholar]
  87. Haase C, Rohde H, Seitz O. 87.  2008. Native chemical ligation at valine. Angew. Chem. Int. Ed. 47:6807–10 [Google Scholar]
  88. Crich D, Banerjee A. 88.  2007. Native chemical ligation at phenylalanine. J. Am. Chem. Soc. 129:10064–65 [Google Scholar]
  89. Fierz B, Kilic S, Hieb AR, Luger K, Muir TW. 89.  2012. Stability of nucleosomes containing homogenously ubiquitylated H2A and H2B prepared using semisynthesis. J. Am. Chem. Soc. 134:19548–51 [Google Scholar]
  90. Siman P, Karthikeyan SV, Nikolov M, Fischle W, Brik A. 90.  2013. Convergent chemical synthesis of histone H2B protein for the site-specific ubiquitination at Lys34. Angew. Chem. Int. Ed. 52:8059–63 [Google Scholar]
  91. Camarero JA, Muir TW. 91.  2001. Native chemical ligation of polypeptides. Curr. Protoc. Protein Sci. 15:181–18.21 [Google Scholar]
  92. Mende F, Seitz O. 92.  2011. 9-Fluorenylmethoxycarbonyl-based solid-phase synthesis of peptide α-thioesters. Angew. Chem. Int. Ed. 50:1232–40 [Google Scholar]
  93. Clippingdale AB, Barrow CJ, Wade JD. 93.  2000. Peptide thioester preparation by Fmoc solid phase peptide synthesis for use in native chemical ligation. J. Pept. Sci. 6:225–34 [Google Scholar]
  94. Botti P, Villain M, Manganiello S, Gaertner H. 94.  2004. Native chemical ligation through in situ O to S acyl shift. Org. Lett. 6:4861–64 [Google Scholar]
  95. Blanco-Canosa JB, Dawson PE. 95.  2008. An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation. Angew. Chem. Int. Ed. 47:6851–55 [Google Scholar]
  96. Fang GM, Li YM, Shen F, Huang YC, Li JB. 96.  et al. 2011. Protein chemical synthesis by ligation of peptide hydrazides. Angew. Chem. Int. Ed. 50:7645–49 [Google Scholar]
  97. Kawakami T, Aimoto S. 97.  2009. Peptide ligation via the in-situ transformation of an amide into a thioester at a cysteine residue. Adv. Exp. Med. Biol. 611:117–18 [Google Scholar]
  98. Chiang KP, Jensen MS, McGinty RK, Muir TW. 98.  2009. A semisynthetic strategy to generate phosphorylated and acetylated histone H2B. ChemBioChem 10:2182–87 [Google Scholar]
  99. Casadio F, Lu X, Pollock SB, LeRoy G, Garcia BA. 99.  et al. 2013. H3R42me2a is a histone modification with positive transcriptional effects. PNAS 110:14894–99 [Google Scholar]
  100. He S, Bauman D, Davis JS, Loyola A, Nishioka K. 100.  et al. 2003. Facile synthesis of site-specifically acetylated and methylated histone proteins: reagents for evaluation of the histone code hypothesis. PNAS 100:12033–38 [Google Scholar]
  101. Gentle IE, De Souza DP, Baca M. 101.  2004. Direct production of proteins with N-terminal cysteine for site-specific conjugation. Bioconjug. Chem. 15:658–63 [Google Scholar]
  102. Villain M, Vizzavona J, Rose K. 102.  2001. Covalent capture: a new tool for the purification of synthetic and recombinant polypeptides. Chem. Biol. 8:673–79 [Google Scholar]
  103. Erlanson DA, Chytil M, Verdine GL. 103.  1996. The leucine zipper domain controls the orientation of AP-1 in the NFAT·AP-1·DNA complex. Chem. Biol. 3:981–91 [Google Scholar]
  104. Komarov AG, Linn KM, Devereaux JJ, Valiyaveetil FI. 104.  2009. Modular strategy for the semisynthesis of a K+ channel: investigating interactions of the pore helix. ACS Chem. Biol. 4:1029–38 [Google Scholar]
  105. Tolbert TJ, Franke D, Wong CH. 105.  2005. A new strategy for glycoprotein synthesis: ligation of synthetic glycopeptides with truncated proteins expressed in E. coli as TEV protease cleavable fusion protein. Bioorg. Med. Chem. 13:909–15 [Google Scholar]
  106. Shah NH, Muir TW. 106.  2014. Inteins: nature's gift to protein chemists. Chem. Sci. 5:446–61 [Google Scholar]
  107. Evans TC Jr, Benner J, Xu MQ. 107.  1998. Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. 7:2256–64 [Google Scholar]
  108. Southworth MW, Amaya K, Evans TC, Xu MQ, Perler FB. 108.  1999. Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27:110–20 [Google Scholar]
  109. Chong S, Mersha FB, Comb DG, Scott ME, Landry D. 109.  et al. 1997. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192:271–81 [Google Scholar]
  110. Shah NH, Dann GP, Vila-Perelló M, Liu Z, Muir TW. 110.  2012. Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J. Am. Chem. Soc. 134:11338–41 [Google Scholar]
  111. Zettler J, Schütz V, Mootz HD. 111.  2009. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 583:909–14 [Google Scholar]
  112. Vila-Perelló M, Liu Z, Shah NH, Willis JA, Idoyaga J, Muir TW. 112.  2013. Streamlined expressed protein ligation using split inteins. J. Am. Chem. Soc. 135:286–92 [Google Scholar]
  113. Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S. 113.  et al. 2004. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol. 375:23–44 [Google Scholar]
  114. Johnson EC, Kent SB. 114.  2006. Insights into the mechanism and catalysis of the native chemical ligation reaction. J. Am. Chem. Soc. 128:6640–46 [Google Scholar]
  115. Kim DH, Tang Z, Shimada M, Fierz B, Houck-Loomis B. 115.  et al. 2013. Histone H3K27 trimethylation inhibits H3 binding and function of SET1-like H3K4 methyltransferase complexes. Mol. Cell. Biol. 33:4936–46 [Google Scholar]
  116. Thompson RE, Liu X, Alonso-García N, Pereira PJ, Jolliffe KA, Payne RJ. 116.  2014. Trifluoroethanethiol: an additive for efficient one-pot peptide ligation–desulfurization chemistry. J. Am. Chem. Soc. 136:8161–64 [Google Scholar]
  117. Whitcomb SJ, Fierz B, McGinty RK, Holt M, Ito T. 117.  et al. 2012. Histone monoubiquitylation position determines specificity and direction of enzymatic cross-talk with histone methyltransferases Dot1L and PRC2. J. Biol. Chem. 287:23718–25 [Google Scholar]
  118. Chatterjee C, McGinty RK, Pellois JP, Muir TW. 118.  2007. Auxiliary-mediated site-specific peptide ubiquitylation. Angew. Chem. Int. Ed. 46:2814–18 [Google Scholar]
  119. McGinty RK, Kohn M, Chatterjee C, Chiang KP, Pratt MR, Muir TW. 119.  2009. Structure–activity analysis of semisynthetic nucleosomes: mechanistic insights into the stimulation of Dot1L by ubiquitylated histone H2B. ACS Chem. Biol. 4:958–68 [Google Scholar]
  120. Shema-Yaacoby E, Nikolov M, Haj-Yahya M, Siman P, Allemand E. 120.  et al. 2013. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep. 4:601–8 [Google Scholar]
  121. Scheuermann JC, de Ayala Alonso AG, Oktaba K, Ly-Hartig N, McGinty RK. 121.  et al. 2010. Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB. Nature 465:243–47 [Google Scholar]
  122. Abeywardana T, Pratt MR. 122.  2014. Using chemistry to investigate the molecular consequences of protein ubiquitylation. ChemBioChem 15:1547–54 [Google Scholar]
  123. Ajish Kumar KS, Haj-Yahya M, Olschewski D, Lashuel HA, Brik A. 123.  2009. Highly efficient and chemoselective peptide ubiquitylation. Angew. Chem. Int. Ed. 48:8090–94 [Google Scholar]
  124. Haj-Yahya M, Eltarteer N, Ohayon S, Shema E, Kotler E. 124.  et al. 2012. N-Methylation of isopeptide bond as a strategy to resist deubiquitinases. Angew. Chem. Int. Ed. 51:11535–39 [Google Scholar]
  125. Shimko JC, North JA, Bruns AN, Poirier MG, Ottesen JJ. 125.  2011. Preparation of fully synthetic histone H3 reveals that acetyl-lysine 56 facilitates protein binding within nucleosomes. J. Mol. Biol. 408:187–204 [Google Scholar]
  126. Manohar M, Mooney AM, North JA, Nakkula RJ, Picking JW. 126.  et al. 2009. Acetylation of histone H3 at the nucleosome dyad alters DNA–histone binding. J. Biol. Chem. 284:23312–21 [Google Scholar]
  127. North JA, Javaid S, Ferdinand MB, Chatterjee N, Picking JW. 127.  et al. 2011. Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res. 39:6465–74 [Google Scholar]
  128. Allahverdi A, Yang R, Korolev N, Fan Y, Davey CA. 128.  et al. 2011. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association. Nucleic Acids Res. 39:1680–91 [Google Scholar]
  129. Simon M, North JA, Shimko JC, Forties RA, Ferdinand MB. 129.  et al. 2011. Histone fold modifications control nucleosome unwrapping and disassembly. PNAS 108:12711–16 [Google Scholar]
/content/journals/10.1146/annurev-biochem-060614-034429
Loading
/content/journals/10.1146/annurev-biochem-060614-034429
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error