1932

Abstract

Several short-lived radionuclides (SLRs) were present in the first few million years of Solar System history. Their abundances have profound impact on the timing of stellar nucleosynthesis events prior to Solar System formation, chronology of events in the early Solar System, early solar activity, heating of early-formed planetesimals, and chronology of planet formation. Isotopic analytical techniques have undergone dramatic improvements in the past decade, leading to tighter constraints on the levels of SLRs in the early Solar System and on the use of these nuclides for detailed chronological studies. This review emphasizes the abundances of SLRs when the Solar System formed and how we know them, and briefly discusses the origins of these nuclides and applications in planetary science.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nucl-010722-074615
2022-09-26
2024-06-12
Loading full text...

Full text loading...

/deliver/fulltext/nucl/72/1/annurev-nucl-010722-074615.html?itemId=/content/journals/10.1146/annurev-nucl-010722-074615&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Reynolds JH. Phys. Rev. Lett. 4:8–10 1960.)
    [Google Scholar]
  2. 2.
    Urey HC. PNAS 41:127–44 1955.)
    [Google Scholar]
  3. 3.
    Brennecka GA et al. Science 327:449–51 2010.)
    [Google Scholar]
  4. 4.
    Tissot FLH, Dauphas N, Grossman L. Sci. Adv. 2:e1501400 2016.)
    [Google Scholar]
  5. 5.
    Dauphas N, Chaussidon M. Annu. Rev. Earth Planet. Sci. 39:351–86 2011.)
    [Google Scholar]
  6. 6.
    Davis AM, McKeegan KD Short-lived radionuclides and early solar system chronology. Treatise on Geochemistry HD Holland, KK Turekian ), Vol. 1 Meteorites and Cosmochemical Processes AM Davis 361–95 Oxford, UK: Elsevier. , 2nd ed.. ( 2014.)
    [Google Scholar]
  7. 7.
    Olesik JW Inductively coupled plasma mass spectrometers. Treatise on Geochemistry HD Holland, KK Turekian ), Vol. 15 Analytical Geochemistry/Inorganic Instrumental Analysis WF McDonough 309–36 Oxford, UK: Elsevier. , 2nd ed.. ( 2014.)
    [Google Scholar]
  8. 8.
    Carlson RW Thermal ionization mass spectrometry. Treatise on Geochemistry HD Holland, KK Turekian ), Vol. 15 Analytical Geochemistry/Inorganic Instrumental Analysis WF McDonough 337–54 Oxford, UK: Elsevier. , 2nd ed.. ( 2014.)
    [Google Scholar]
  9. 9.
    Bizzarro M et al. J. Anal. At. Spectrom. 26:565–77 2011.)
    [Google Scholar]
  10. 10.
    Ireland TR Ion microscopes and microprobes. Treatise on Geochemistry HD Holland, KK Turekian ), Vol. 15 Analytical Geochemistry/Inorganic Instrumental Analysis WF McDonough 385–409 Oxford, UK: Elsevier. , 2nd ed.. ( 2014.)
    [Google Scholar]
  11. 11.
    Stephan T et al. Int. J. Mass Spectrom. 407:1–15 2016.)
    [Google Scholar]
  12. 12.
    Savina M, Trappitsch R Resonance ionization mass spectrometry (RIMS): Fundamentals and applications including secondary neutral mass spectrometry. Photoionization and Photon-Induced Processes in Mass Spectrometry: Fundamentals and Applications R Zimmermann, L Hanley 215–44 Weinheim, Ger: Wiley-VCH 2020.)
    [Google Scholar]
  13. 13.
    Davis AM et al. Geochim. Cosmochim. Acta 158:245–61 2015.)
    [Google Scholar]
  14. 14.
    Krot AN et al. Classification of meteorites and their genetic relationships. Treatise on Geochemistry HD Holland, KK Turekian ), Vol. 1 Meteorites and Cosmochemical Processes AM Davis 1–63 Oxford, UK: Elsevier. , 2nd ed.. ( 2014.)
    [Google Scholar]
  15. 15.
    Amelin Y et al. Earth Planet. Sci. Lett. 300:343–50 2010.)
    [Google Scholar]
  16. 16.
    Connelly JN et al. Science 338:651–55 2012.)
    [Google Scholar]
  17. 17.
    Bouvier A, Brennecka GA, Wadhwa M. Absolute chronology of the first solids in the Solar System Abstract presented at the Workshop on Formation of the First Solids in the Solar System Kauai, HI: Nov. 7–9. https://www.lpi.usra.edu/meetings/solids2011/pdf/9054.pdf 2011.)
    [Google Scholar]
  18. 18.
    MacPherson GJ Calcium–aluminum-rich inclusions in chondritic meteorites. Treatise on Geochemistry HD Holland, KK Turekian ), Vol. 1 Meteorites and Cosmochemical Processes AM Davis 139–79 Oxford, UK: Elsevier. , 2nd ed.. ( 2014.)
    [Google Scholar]
  19. 19.
    Hu JY et al. Sci. Adv. 7:eabc2962 2021.)
    [Google Scholar]
  20. 20.
    Davis AM, Richter FM Condensation and evaporation of solar system materials. Treatise on Geochemistry HD Holland, KK Turekian ), Vol. 1 Meteorites and Cosmochemical Processes AM Davis 335–60 Oxford, UK: Elsevier. , 2nd ed.. ( 2014.)
    [Google Scholar]
  21. 21.
    Scott ERD, Krot AN Chondrites and their components. Treatise on Geochemistry HD Holland, KK Turekian ), Vol. 1 Meteorites and Cosmochemical Processes AM Davis 65–137 Oxford, UK: Elsevier. , 2nd ed.. ( 2014.)
    [Google Scholar]
  22. 22.
    Warren PH. Earth Planet. Sci. Lett. 311:93–100 2011.)
    [Google Scholar]
  23. 23.
    Kruijer TS, Kleine T, Borg LE. Nat. Astron. 4:32–40 2020.)
    [Google Scholar]
  24. 24.
    Burkhardt C et al. Sci. Adv. 7:eabj7601 2021.)
    [Google Scholar]
  25. 25.
    Kita NT et al. Astron. Soc. Pac. Conf. Ser 34155887 2005.)
    [Google Scholar]
  26. 26.
    Kondev FG et al. Chin. Phys. C 45:030001 2021.)
    [Google Scholar]
  27. 27.
    Chaussidon M, Robert F, McKeegan KD. Geochim. Cosmochim. Acta 70:224–45 2006.)
    [Google Scholar]
  28. 28.
    Podosek FA et al. Geochim. Cosmochim. Acta 55:1083–110 1991.)
    [Google Scholar]
  29. 29.
    Leya I. Geochim. Cosmochim. Acta 75:1507–18 2011.)
    [Google Scholar]
  30. 30.
    Mishra RK, Marhas KK. Nat. Astron. 3:498–505 2019.)
    [Google Scholar]
  31. 31.
    Richter FM, Davis AM, DePaolo DJ, Watson EB. Geochim. Cosmochim. Acta 67:3905–23 2003.)
    [Google Scholar]
  32. 32.
    Richter F, Chaussidon M, Mendybaev R, Kite E. Geochim. Cosmochim. Acta 182:1–23 2016.)
    [Google Scholar]
  33. 33.
    Kunihiro T, Ota T, Nakamura E. Geochim. Cosmochim. Acta 252:107–25 2019.)
    [Google Scholar]
  34. 34.
    McKeegan KD, Chaussidon M, Robert F. Science 289:1334–37 2000.)
    [Google Scholar]
  35. 35.
    Fukuda K et al. Astrophys. J. 886:34 2019.)
    [Google Scholar]
  36. 36.
    Dunham ET et al. Geochim. Cosmochim. Acta 324:194–220 2022.)
    [Google Scholar]
  37. 37.
    Gounelle M, Chaussidon M, Rollion-Bard C. Astrophys. J. 763:L33 2013.)
    [Google Scholar]
  38. 38.
    Sossi PA et al. Nat. Astron. 1:1–6 2017.)
    [Google Scholar]
  39. 39.
    Bekaert DV et al. Sci. Adv. 7:eabg8329 2021.)
    [Google Scholar]
  40. 40.
    Vermeesch P. Chem. Geol. 312–13:190–94 2012.)
    [Google Scholar]
  41. 41.
    Kööp L et al. Nat. Astron. 2:709–13 2018.)
    [Google Scholar]
  42. 42.
    Lee T, Papanastassiou DA, Wasserburg GJ. Geophys. Res. Lett. 3:109–12 1976.)
    [Google Scholar]
  43. 43.
    Lee T, Papanastassiou DA, Wasserburg GJ. Astrophys. J. 211:L107–10 1977.)
    [Google Scholar]
  44. 44.
    Jacobsen B et al. Earth Planet. Sci. Lett. 272:353–64 2008.)
    [Google Scholar]
  45. 45.
    Wasserburg GJ, Wimpenny J, Yin Q-Z. Meteorit. Planet. Sci. 47:1980–97 2012.)
    [Google Scholar]
  46. 46.
    Larsen KK et al. Astrophys. J. Lett. 735:L37 2011.)
    [Google Scholar]
  47. 47.
    Larsen KK et al. Earth Planet. Sci. Lett. 535:116088 2020.)
    [Google Scholar]
  48. 48.
    Luu T-H, Hin RC, Coath CD, Elliott T. Earth Planet. Sci. Lett. 522:166–75 2019.)
    [Google Scholar]
  49. 49.
    Young ED et al. Science 308:223–27 2005.)
    [Google Scholar]
  50. 50.
    Lin Y et al. PNAS 102:1306–11 2005.)
    [Google Scholar]
  51. 51.
    Hsu W et al. Astrophys. J. 640:525–29 2006.)
    [Google Scholar]
  52. 52.
    Jacobsen B et al. Astrophys. J. 731:L28 2011.)
    [Google Scholar]
  53. 53.
    Turner G et al. Geochim. Cosmochim. Acta 123:358–67 2013.)
    [Google Scholar]
  54. 54.
    Leya I, Masarik J, Lin Y. Meteorit. Planet. Sci. 53:1252–66 2018.)
    [Google Scholar]
  55. 55.
    Tang H et al. Geochim. Cosmochim. Acta 207:1–18 2017.)
    [Google Scholar]
  56. 56.
    Hutcheon ID, Armstrong JT, Wasserburg GJ. Meteoritics 19:243–44 1984.)
    [Google Scholar]
  57. 57.
    Sahijpal S, Goswami JN, Davis AM. Geochim. Cosmochim. Acta 64:1989–2005 2000.)
    [Google Scholar]
  58. 58.
    Ito M, Nagasawa H, Yurimoto H. Meteorit. Planet. Sci. 41:1871–81 2006.)
    [Google Scholar]
  59. 59.
    Srinivasan G, Sahijpal S, Ulyanov AA, Goswami JN. Geochim. Cosmochim. Acta 62:1823–35 1996.)
    [Google Scholar]
  60. 60.
    Liu M-C, Chaussidon M, Srinivasan G, McKeegan KD. Astrophys. J. 761:137 2012.)
    [Google Scholar]
  61. 61.
    Srinivasan G, Chaussidon M. Earth Planet. Sci. Lett. 374:11–23 2013.)
    [Google Scholar]
  62. 62.
    Liu M-C. Geochim. Cosmochim. Acta 201:123–35 2017.)
    [Google Scholar]
  63. 63.
    Glavin DP, Kubny A, Jagoutz E, Lugmair GW. Meteorit. Planet. Sci. 39:693–700 2004.)
    [Google Scholar]
  64. 64.
    Birck J-L, Allégre CJ. Geophys. Res. Lett. 12:745–48 1985.)
    [Google Scholar]
  65. 65.
    Göpel C et al. Geochim. Cosmochim. Acta 156:1–24 2015.)
    [Google Scholar]
  66. 66.
    Jilly-Rehak CE, Huss GR, Nagashima K. Geochim. Cosmochim. Acta 201:224–44 2017.)
    [Google Scholar]
  67. 67.
    Nyquist LE, Kleine T, Shih C-Y, Reese YD. Geochim. Cosmochim. Acta 73:5115–36 2009.)
    [Google Scholar]
  68. 68.
    Sanborn ME et al. Geochim. Cosmochim. Acta 245:577–96 2019.)
    [Google Scholar]
  69. 69.
    Tissot FLH, Dauphas N, Grove TL. Geochim. Cosmochim. Acta 213:593–617 2017.)
    [Google Scholar]
  70. 70.
    Roy J-C, Kohman TP. Can. J. Phys. 35:649–55 1957.)
    [Google Scholar]
  71. 71.
    Kutschera W et al. Nucl. Instrum. Methods Phys. Res. B 5:430–35 1984.)
    [Google Scholar]
  72. 72.
    Rugel G et al. Phys. Rev. Lett. 103:072502 2009.)
    [Google Scholar]
  73. 73.
    Shukolyukov A, Lugmair GW. Science 259:1138–42 1993.)
    [Google Scholar]
  74. 74.
    Tachibana S, Huss GR. Astrophys. J. 588:L41–44 2003.)
    [Google Scholar]
  75. 75.
    Ogliore RC, Huss GR, Nagashima K. Nucl. Instrum. Methods Phys. Res. B 269:1910–18 2011.)
    [Google Scholar]
  76. 76.
    Coath CD, Steele RCJ, Lunnon WF. J. Anal. At. Spectrom. 28:52–58 2013.)
    [Google Scholar]
  77. 77.
    Telus M et al. Meteorit. Planet. Sci. 47:2013–30 2012.)
    [Google Scholar]
  78. 78.
    Tang H, Dauphas N. Earth Planet. Sci. Lett. 359–360:248–63 2012.)
    [Google Scholar]
  79. 79.
    Tang H, Dauphas N. Astrophys. J. 802:22 2015.)
    [Google Scholar]
  80. 80.
    Telus M et al. Geochim. Cosmochim. Acta 221:342–57 2018.)
    [Google Scholar]
  81. 81.
    Trappitsch R et al. Astrophys. J. 857:L15 2018.)
    [Google Scholar]
  82. 82.
    Cook DL, Meyer BS, Schönbächler M. Astrophys. J. 917:59 2021.)
    [Google Scholar]
  83. 83.
    Trappitsch R et al. Geochim. Cosmochim. Acta 221:87–108 2018.)
    [Google Scholar]
  84. 84.
    Kodolányi J et al. Geochim. Cosmochim. Acta 221:127–44 2018.)
    [Google Scholar]
  85. 85.
    Kodolányi J et al. Astrophys. J. 929:107 2022.)
    [Google Scholar]
  86. 86.
    Harper CL Jr. Astrophys. J. 466:437–56 1996.)
    [Google Scholar]
  87. 87.
    Schönbächler M et al. Science 295:1705–8 2002.)
    [Google Scholar]
  88. 88.
    Iizuka T et al. Earth Planet. Sci. Lett. 439:172–81 2016.)
    [Google Scholar]
  89. 89.
    Haba MK et al. PNAS 118:e2017750118 2021.)
    [Google Scholar]
  90. 90.
    Burkhardt C et al. Earth Planet. Sci. Lett. 312:390–400 2011.)
    [Google Scholar]
  91. 91.
    Becker H, Walker RJ. Chem. Geol. 196:43–56 2003.)
    [Google Scholar]
  92. 92.
    Kelly WR, Wasserburg GJ. Geophys. Res. Lett. 5:1079–82 1978.)
    [Google Scholar]
  93. 93.
    Chen JH, Papanastassiou DA, Wasserburg GJ. Geochim. Cosmochim. Acta 66:3793–810 2002.)
    [Google Scholar]
  94. 94.
    Schönbächler M et al. Geochim. Cosmochim. Acta 72:5330–41 2008.)
    [Google Scholar]
  95. 95.
    Blichert-Toft J et al. Earth Planet. Sci. Lett. 296:469–80 2010.)
    [Google Scholar]
  96. 96.
    Horan MF, Carlson RW, Blichert-Toft J. Earth Planet. Sci. Lett.351–352215–22 2012.)
    [Google Scholar]
  97. 97.
    Brennecka GA, Amelin Y, Kleine T. Earth Planet. Sci. Lett. 490:1–10 2018.)
    [Google Scholar]
  98. 98.
    Matthes M et al. Geochim. Cosmochim. Acta 169:45–62 2015.)
    [Google Scholar]
  99. 99.
    Matthes M, Fischer-Gödde M, Kruijer T, Kleine T. Geochim. Cosmochim. Acta 220:82–95 2018.)
    [Google Scholar]
  100. 100.
    Fehr MA et al. Geochim. Cosmochim. Acta 69:5099–112 2004.)
    [Google Scholar]
  101. 101.
    Brennecka GA et al. Geochim. Cosmochim. Acta 201:331–44 2017.)
    [Google Scholar]
  102. 102.
    Hohenberg CM, Pravdivtseva OV. Chem. Erde 68:339–51 2008.)
    [Google Scholar]
  103. 103
    Pravdivtseva O, Meshik A, Hohenberg CM, Krot AN. Geochim. Cosmochim. Acta 201:320–30 2017.)
    [Google Scholar]
  104. 104.
    Gilmour JD, Pravdivtseva OV, Busfield A, Hohenberg CM. Meteorit. Planet. Sci. 41:19–31 2006.)
    [Google Scholar]
  105. 105.
    Hidaka H, Ohta Y, Yoneda S, DeLaeter JR. Earth Planet. Sci. Lett. 193:459–66 2001.)
    [Google Scholar]
  106. 106.
    Hidaka H, Yoneda S. Geochim. Cosmochim. Acta 75:3687–97 2011.)
    [Google Scholar]
  107. 107.
    Hidaka H, Yoneda S. Sci. Rep. 3:1330 2013.)
    [Google Scholar]
  108. 108.
    Bermingham KR et al. Geochim. Cosmochim. Acta 133:463–78 2014.)
    [Google Scholar]
  109. 109.
    Brennecka GA, Kleine T. Astrophys. J. 837:L9 2017.)
    [Google Scholar]
  110. 110.
    Friedman AM et al. Radiochim. Acta 5:192–94 1966.)
    [Google Scholar]
  111. 111.
    Meissner F, Schmidt-Ott WD, Ziegeler L Z. Phys. A 327:171–74 1987.)
    [Google Scholar]
  112. 112.
    Borg LE et al. Earth Planet. Sci. Lett. 523:115706 2019.)
    [Google Scholar]
  113. 113.
    Marks NE et al. Earth Planet. Sci. Lett. 405:15–24 2014.)
    [Google Scholar]
  114. 114.
    Fang L et al. PNAS 119:e2120933119 2022.)
    [Google Scholar]
  115. 115.
    Kinoshita N et al. Science 335:1614–17 2012.)
    [Google Scholar]
  116. 116.
    Villa IM et al. Geochim. Cosmochim. Acta 285:70–77 2020.)
    [Google Scholar]
  117. 117.
    Kruijer TS et al. Earth Planet. Sci. Lett. 403:317–27 2014.)
    [Google Scholar]
  118. 118.
    Spitzer F, Burkhardt C, Nimmo F, Kleine T. Earth Planet. Sci. Lett. 576:117211 2021.)
    [Google Scholar]
  119. 119.
    Kleine T, Walker RJ. Annu. Rev. Earth Planet. Sci. 45:389–417 2017.)
    [Google Scholar]
  120. 120.
    Baker RGA et al. Earth Planet. Sci. Lett. 291:39–47 2010.)
    [Google Scholar]
  121. 121.
    Palk C et al. Meteorit. Planet. Sci. 53:167–86 2018.)
    [Google Scholar]
  122. 122.
    Hudson GB, Kennedy BM, Podosek FA, Hohenberg CM. Proc. Lunar Planet. Sci. Conf 19:547–57 1989.)
    [Google Scholar]
  123. 123.
    Turner G et al. Earth Planet. Sci. Lett. 261:491–99 2007.)
    [Google Scholar]
  124. 124.
    Burbidge EM, Burbidge GR, Fowler WA, Hoyle F. Rev. Mod. Phys. 29:548–654 1957.)
    [Google Scholar]
  125. 125.
    Cameron AGW. Chalk River Rep. CRL-41 1957.)
  126. 126.
    Cameron AGW, Truran JW. Icarus 30:447–61 1977.)
    [Google Scholar]
  127. 127.
    Dwarkadas VV et al. Astrophys. J. 851:147 2017.)
    [Google Scholar]
  128. 128.
    Brinkman HE et al. Astrophys. J. 884:38 2019.)
    [Google Scholar]
  129. 129.
    Brinkman HE et al. Astrophys. J. 923:47 2021.)
    [Google Scholar]
  130. 130.
    Lugaro M, Ott U, Kereszturi Á. Prog. Part. Nucl. Phys. 102:1–147 2018.)
    [Google Scholar]
  131. 131.
    Vescovi D et al. Astrophys. J. 863:115 2018.)
    [Google Scholar]
  132. 132.
    Young ED. Earth Planet. Sci. Lett. 392:16–27 2014.)
    [Google Scholar]
  133. 133.
    Young ED. Astrophys. J. 826:129 2016.)
    [Google Scholar]
  134. 134.
    Young ED. Proc. IAU Symp. 345:70–77 2020.)
    [Google Scholar]
  135. 135.
    Côté B et al. Astrophys. J. 878:156 2019.)
    [Google Scholar]
  136. 136.
    Côté B, Yagüe A, Világos B, Lugaro M. Astrophys. J. 887:213 2019.)
    [Google Scholar]
  137. 137.
    Kaur T, Sahijpal S. Mon. Not. R. Astron. Soc. 490:1620–37 2019.)
    [Google Scholar]
  138. 138.
    Banerjee P, Qian Y-Z, Heger A, Haxton WC. Nat. Commun 7:13639 2016.)
    [Google Scholar]
  139. 139.
    Sieverding A, Müller B, Qian Y-Z. Astrophys. J. 904:163 2020.)
    [Google Scholar]
  140. 140.
    Qian Y-Z EPJ Web Conf 260:09001 2022.)
    [Google Scholar]
  141. 141.
    Fukuda K et al. Geochim. Cosmochim. Acta 322:194–226 2022.)
    [Google Scholar]
  142. 142.
    Siron G, Fukuda K, Kimura M, Kita NT. Geochim. Cosmochim. Acta 324:312–45 2022.)
    [Google Scholar]
  143. 143.
    Ireland TR. Geochim. Cosmochim. Acta 52:2827–39 1988.)
    [Google Scholar]
  144. 144.
    Liu M-C et al. Geochim. Cosmochim. Acta 73:5051–79 2009.)
    [Google Scholar]
  145. 145.
    Park C et al. Geochim. Cosmochim. Acta 200:6–24 2017.)
    [Google Scholar]
  146. 146.
    Kööp L et al. Geochim. Cosmochim. Acta 189:70–95 2016.)
    [Google Scholar]
  147. 147.
    Holst JC et al. PNAS 110:8819–23 2013.)
    [Google Scholar]
  148. 148.
    Anand A et al. Geochem. Perspect. Lett. 20:6–10 2021.)
    [Google Scholar]
  149. 149.
    Matthes M, van Orman JA, Kleine T. Geochim. Cosmochim. Acta 285:193–206 2020.)
    [Google Scholar]
  150. 150.
    MacPherson GJ et al. Geochim. Cosmochim. Acta 321:343–74 2022.)
    [Google Scholar]
  151. 151.
    MacPherson GJ et al. Astrophys. J. 811:L117–21 2010.)
    [Google Scholar]
  152. 152.
    Kita NT et al. Geochim. Cosmochim. Acta 86:37–51 2012.)
    [Google Scholar]
  153. 153.
    MacPherson GJ et al. Earth Planet. Sci. Lett. 331–332:43–54 2012.)
    [Google Scholar]
  154. 154.
    Makide K et al. Geochim. Cosmochim. Acta 110:190–215 2013.)
    [Google Scholar]
  155. 155.
    Mishra RK, Chaussidon M. Earth Planet. Sci. Lett. 390:318–26 2014.)
    [Google Scholar]
  156. 156.
    Kawasaki N et al. Geochim. Cosmochim. Acta 169:99–114 2015.)
    [Google Scholar]
  157. 157.
    Kööp L et al. Geochim. Cosmochim. Acta 184:151–72 2016.)
    [Google Scholar]
  158. 158.
    MacPherson GJ et al. Geochim. Cosmochim. Acta 201:65–82 2017.)
    [Google Scholar]
  159. 159.
    Ushikubo T, Tenner TJ, Hiyagon H, Kita NT. Geochim. Cosmochim. Acta 201:103–22 2017.)
    [Google Scholar]
  160. 160.
    Kawasaki N et al. Geochim. Cosmochim. Acta 221:318–41 2018.)
    [Google Scholar]
  161. 161.
    Kööp L et al. Geochim. Cosmochim. Acta 221:296–317 2018.)
    [Google Scholar]
  162. 162.
    MacPherson GJ, Defouilloy C, Kita NT. Earth Planet. Sci. Lett. 491:238–43 2018.)
    [Google Scholar]
  163. 163.
    Kawasaki N et al. Earth Planet. Sci. Lett. 511:25–35 2019.)
    [Google Scholar]
  164. 164.
    Krot AN et al. Geochemistry 79:125529 2019.)
    [Google Scholar]
  165. 165.
    Liu M-C, Han J, Brearley AJ, Hertwig AT. Sci. Adv. 5:eaaw3350 2019.)
    [Google Scholar]
  166. 166.
    Simon SB, Krot AN, Nagashima K. Meteorit. Planet. Sci. 54:1362–78 2019.)
    [Google Scholar]
  167. 167.
    Han J et al. Geochim. Cosmochim. Acta 269:639–60 2020.)
    [Google Scholar]
  168. 168.
    Kawasaki N et al. Geochim. Cosmochim. Acta 279:1–15 2020.)
    [Google Scholar]
  169. 169.
    MacPherson GJ, Krot AN, Nagashima K. Meteorit. Planet. Sci. 55:2519–38 2020.)
    [Google Scholar]
  170. 170.
    Wada S, Kawasaki N, Park C, Yurimoto H. Geochim. Cosmochim. Acta 288:161–75 2020.)
    [Google Scholar]
  171. 171.
    Fahey AJ, Goswami JN, McKeegan KD, Zinner E. Geochim. Cosmochim. Acta 51:329–50 1987.)
    [Google Scholar]
  172. 172.
    Ireland TR, Compston W. Nature 327:689–92 1987.)
    [Google Scholar]
  173. 173.
    Ireland TR. Geochim. Cosmochim. Acta 54:3219–37 1990.)
    [Google Scholar]
  174. 174.
    Ireland TR, Zinner EK, Fahey AJ, Esat TM. Geochim. Cosmochim. Acta 56:2503–20 1992.)
    [Google Scholar]
  175. 175.
    Sahijpal S, Goswami JN, Davis AM. Geochim. Cosmochim. Acta 64:1989–2005 2000.)
    [Google Scholar]
  176. 176.
    Liu M-C et al. Geochim. Cosmochim. Acta 73:5051–79 2009.)
    [Google Scholar]
  177. 177.
    Williams CD et al. Geochim. Cosmochim. Acta 201:25–48 2017.)
    [Google Scholar]
  178. 178.
    Bodénan J-D et al. Geochim. Cosmochim. Acta 286:214–26 2020.)
    [Google Scholar]
  179. 179.
    Ushikubo T et al. Geochim. Cosmochim. Acta 109:280–93 2013.)
    [Google Scholar]
  180. 180.
    Nagashima K, Krot AN, Huss GR. Geochem. J. 48:561–70 2014.)
    [Google Scholar]
  181. 181.
    Sano Y et al. Geochem. J. 48:133–44 2014.)
    [Google Scholar]
  182. 182.
    Luu T-H, Young ED, Gounelle M, Chaussidon M. PNAS 112:1298–303 2015.)
    [Google Scholar]
  183. 183.
    Nagashima K, Krot AN, Komatsu M. Geochim. Cosmochim. Acta 201:303–19 2017.)
    [Google Scholar]
  184. 184.
    Schrader DL et al. Geochim. Cosmochim. Acta 201:275–302 2017.)
    [Google Scholar]
  185. 185.
    Bollard J et al. Geochim. Cosmochim. Acta 260:62–83 2019.)
    [Google Scholar]
  186. 186.
    Hertwig AT et al. Geochim. Cosmochim. Acta 253:111–26 2019.)
    [Google Scholar]
  187. 187.
    Tenner TJ et al. Geochim. Cosmochim. Acta 260:133–60 2019.)
    [Google Scholar]
  188. 188.
    Merle R et al. Geochim. Cosmochim. Acta 277:1–20 2020.)
    [Google Scholar]
  189. 189.
    Deng Z et al. Geochim. Cosmochim. Acta 299:163–83 2021.)
    [Google Scholar]
  190. 190.
    Siron G, Fukuda K, Kimura M, Kita NT. Geochim. Cosmochim. Acta 293:103–26 2021.)
    [Google Scholar]
  191. 191.
    Spivak-Birndorf L, Wadhwa M, Janney P. Geochim. Cosmochim. Acta 73:5202–11 2009.)
    [Google Scholar]
  192. 192.
    Goodrich CA et al. Earth Planet. Sci. Lett. 295:531–40 2010.)
    [Google Scholar]
  193. 193.
    Bouvier A, Spivak-Birndorf LJ, Brennecka GA, Wadhwa M. Geochim. Cosmochim. Acta 75:5310–23 2011.)
    [Google Scholar]
  194. 194.
    Koefoed P et al. Geochim. Cosmochim. Acta 183:31–45 2016.)
    [Google Scholar]
  195. 195.
    Hublet G, Debaille V, Wimpenny J, Yin Q-Z. Geochim. Cosmochim. Acta 218:73–97 2017.)
    [Google Scholar]
  196. 196.
    Schiller M, Connelly JN, Bizzarro M. Meteorit. Planet. Sci. 52:1233–43 2017.)
    [Google Scholar]
  197. 197.
    Srinivasan P et al. Nat. Commun. 9:3036 2018.)
    [Google Scholar]
/content/journals/10.1146/annurev-nucl-010722-074615
Loading
/content/journals/10.1146/annurev-nucl-010722-074615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error