1932

Abstract

This review presents a selection of recent publications related to the chemistry and catalysis of C1 molecules, including methane, methanol, carbon monoxide, and carbon dioxide. These molecules play an important role in the current supply of energy and chemicals and will likely become even more relevant because of the need to decarbonize fuels (shift from coal to natural gas) in line with CO capture and use to mitigate global warming, as well as a gradual shift on the supply side from crude oil to natural gas. This review includes both recent industrial developments, such as the huge increase in methanol-to-olefins-capacity build in China and the demonstration of oxidative coupling of methane, and scientific developments in these chemistries facilitated by improved capabilities in, for example, analytical tools and computational modeling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-080615-034616
2016-06-07
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/7/1/annurev-chembioeng-080615-034616.html?itemId=/content/journals/10.1146/annurev-chembioeng-080615-034616&mimeType=html&fmt=ahah

Literature Cited

  1. McFarland E. 1.  2012. Unconventional chemistry for unconventional natural gas. Science 338:6105340–42 [Google Scholar]
  2. Lunsford JH. 2.  2000. Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal. Today 63:165–74 [Google Scholar]
  3. Lozano RA, Shen XJ, Moiraghi R, Dong W, Busnengo HF. 3.  2015. Cutting a chemical bond with demon's scissors: Mode- and bond-selective reactivity of methane on metal surfaces. Surf. Sci. 640:25–35 [Google Scholar]
  4. Karakaya C, Zhu H, Kee RJ. 4.  2015. Kinetic modeling of methane dehydroaromatization chemistry on Mo/Zeolite catalysts in packed-bed reactors. Chem. Eng. Sci. 123:474–86 [Google Scholar]
  5. Schwarz H. 5.  2015. Thermal hydrogen-atom transfer from methane: a mechanistic exercise. Chem. Phys. Lett. 629:91–101 [Google Scholar]
  6. Yi N, Flytzani-Stephanopoulos M. 6.  2015. Gold/ceria: the making of a robust catalyst for fuel processing and hydrogen production. Catalysis by Materials with Well-Defined Structures Z Wu, SH Overbury 133–58 Amsterdam: Elsevier [Google Scholar]
  7. Tang P, Zhu Q, Wua Z, Ma D. 7.  2014. Methane activation: the past and future. Energy Environ. Sci. 7:2580–91 [Google Scholar]
  8. Ito T, Wang J-X, Lin C-H, Lunsford JH. 8.  1985. Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J. Am. Chem. Soc. 107:5062–68 [Google Scholar]
  9. Derouane EG, Parmon V, Lemos F, Ramôa Ribeiro F. 9.  2005. Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities. Proceedings of the NATO Advanced Study Institute, Held in Vilamoura, Portugal, July 6–18, 2003 Dordrecht, Neth.: Springer Sci. Bus. Media
  10. Dresselhaus MS, Dresselhaus G, Avouris P. 10.  2001. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Berlin: Springer Verlag
  11. Ashik UPM, Wan Daud WMA, Abbas HF. 11.  2015. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane—a review. Renew. Sustain. Energy Rev. 44:221–56 [Google Scholar]
  12. Guo X, Fang G, Li G, Ma H, Fan H. 12.  et al. 2014. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344:616 [Google Scholar]
  13. Bao X, Guo X, Fang G, Deng D, Ma H, Tan D. 13.  Synthesis of olefins from oxygen-free direct conversion of methane and catalysts thereof US Patent No. 2014/0336432
  14. Weckhuysen BM, Ruitenbeek M. 14.  2015. A radical twist to the versatile behavior of iron in selective methane activation. Angew. Chem. Int. Ed. 53:4211137–39 [Google Scholar]
  15. Centi G. 15.  2015. Direct conversion of methane: searching for the “Holy Grail”. ChemSusChem 8:212–16 [Google Scholar]
  16. Wang LS, Tao LX, Xie MS, Xu GF, Huang JS, Xu YD. 16.  1993. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal. Lett. 21:35 [Google Scholar]
  17. Ma S, Guo X, Zhao L, Scott S, Bao X. 17.  2013. Recent progress in methane dehydroaromatization: from laboratory curiosities to promising technology. J. Energy Chem. 22:1–20 [Google Scholar]
  18. Tempelman CHL, de Rodrigues VO, van Eck ERH, Magusin PCMM, Hensen EJM. 18.  2015. Desilication and silylation of Mo/HZSM-5 for methane dehydroaromatization. Microporous Mesoporous Mater. 203:259–73 [Google Scholar]
  19. Tempelman CHL, Hensen EJM. 19.  2015. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction. Appl. Catal. B Environ. 176–77:731–39 [Google Scholar]
  20. Tempelman CHL, Zhu X, Hensen EJM. 20.  2015. Activation of Mo/HZSM-5 for methane aromatization. Chin. J. Catal. 36:829–37 [Google Scholar]
  21. Leonard LE, Gattupalli R, Shafe P, Sattar A, Hatami RS. 21.  2014. Apparatus and process for the conversion of methane into acetylene. US Patent No. 2015/0361010 A1
  22. Fisher J. 22.  2015. Methane-to-ethylene plant comes online in Texas. Daily GPI, April 6. Accessed Sept. 1, 2015. http://www.naturalgasintel.com/articles/101882-methane-to-ethylene-plant-comes-online-in-texas
  23. Maitra AM, Campbell I, Tyler RJ. 23.  1992. Influence of basicity on the catalytic activity for oxidative coupling of methane. Appl. Catal. A Gen. 85:27–46 [Google Scholar]
  24. Kondratenko EV, Baerns M. 24.  2008. Oxidative coupling of methane. Handbook of Heterogeneous Catalysis G Ertl, H Knözinger, F Schüth, J Weitkamp 3010–23 Weinheim, Ger.: Wiley-VCH Verlag GmbH & Co. [Google Scholar]
  25. Arndt S, Otremba T, Simon U, Yildiz M, Schubert H, Schomäcker R. 25.  2012. Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known?. Appl. Catal. A Gen. 425–426:53–61 [Google Scholar]
  26. Arndt S, Laugel G, Levchenko S, Horn R, Baerns M. 26.  et al. 2011. A critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane. Catal. Rev. 53:424–514 [Google Scholar]
  27. Noon D, Zohour B, Senkan S. 27.  2014. Oxidative coupling of methane with La2O3eCeO2 nanofiber fabrics: a reaction engineering study. J. Nat. Gas Sci. Eng. 18:406–11 [Google Scholar]
  28. Preuß U, Baerns M. 28.  1987. Chemical technology of natural gas—its present state and prospects. Chem. Eng. Technol. 10:297–305 [Google Scholar]
  29. Rafique HA, Vuddagiri S, Harraz H, Radaelli G, Scher EC. 29.  et al. 2015. Oxidative coupling of methane implementations for olefin production. Int. Patent No. WO2015106023A1
  30. Nyce G, Black R, Czerpak P, Faz C, Freer E. 30.  et al. 2015. Ethylene-to-liquids systems and methods. Int. Patent No. WO2015105911A1
  31. Iyer R, Takachenko A, Weinberger S, Scher E. 31.  2014. Natural gas processing and systems. US Patent No. US20140012053A1
  32. Iyer R, Tkachenko A, Weinberger S, Scher E, Radaelli G, Harraz H. 32.  2014. Natural gas processing and systems. US Patent No. US20140018589A1
  33. Alcid M, Cizeron JM, Gamoras J, McCormick J, Nyce G. 33.  et al. 2012. Catalysts for petrochemical catalysis. Int. Patent No. WO2012162526A2
  34. Zavyalova U, Holena M, Schlogl R, Baerns M. 34.  2011. Morphology and microstructure of Li/MgO catalysts for the oxidative coupling of methane. ChemCatChem 3:1935–47 [Google Scholar]
  35. Scher EC, Zurcher FR, Cizeron JM, Schammel WP, Tkachenko A. 35.  et al. 2011. Nanowire catalysis. Int. Patent No. WO2011149996A2
  36. Mleczko L, Baerns M. 36.  1995. Catalytic oxidative coupling of methane—reaction engineering aspects and process schemes. Fuel Proc. Technol. 42:217–48 doi:10.1016/0378–3820(94)00121–9 [Google Scholar]
  37. Beck B, Fleischer V, Arndt S, González Hevia M, Urakawa A. 37.  et al. 2014. Oxidative coupling of methane—a complex surface/gas phase mechanism with strong impact on the reaction engineering. Catal. Today 228:212–18 [Google Scholar]
  38. Sun J, Thybaut J, Marin G. 38.  2008. Microkinetics of methane oxidative coupling. Catal. Today 137:90–102 [Google Scholar]
  39. Alexiadis VI, Thybaut JW, Kechagiopoulos PN, Chaar M, Van Veen AC. 39.  et al. 2014. Oxidative coupling of methane: catalytic behaviour assessment via comprehensive microkinetic modelling. Appl. Catal. B Environ. 150–51:496–505 [Google Scholar]
  40. Sofranko JA, Leonard JJ, Jones CA, Gafeney AM, Withers HP. 40.  1988. Catalytic oxidative coupling of methane over sodium-promoted Mn/SiO2 and Mn/MgO. Catal. Today 3:2–3127–35 [Google Scholar]
  41. Sadjadi S, Simon U, Godini HR, Görke O, Schomäcker R, Wozny G. 41.  2015. Reactor material and gas dilution effects on the performance of miniplant-scale fluidized-bed reactors for oxidative coupling of methane. Chem. Eng. J. 281:678–87 [Google Scholar]
  42. Omata K, Hashimoto S, Tominaga H, Fujimoto K. 42.  1989. Appl. Catal. 521L1–L4
  43. Haag S, Bosomoiu M, van Veen AC, Mirodatos C. 43.  2007. Oxidative coupling of methane in a catalytic membrane reactor: impact of the catalyst membrane interaction on the reactor performance. Stud. Surf. Sci. Catal. 167:19–24 [Google Scholar]
  44. Godini HR, Trivedi H, Gili de Villasante A, Görke O, Jašo S. 44.  et al. 2013. Design and demonstration of an experimental membrane reactor set-up for oxidative coupling of methane. Chem. Eng. Res. Des. 91:122671–81 [Google Scholar]
  45. Godini HR, Xiao S, Kim M, Holst N, Jašo S. 45.  et al. 2014. Experimental and model-based analysis of membrane reactor performance for methane oxidative coupling: Effect of radial heat and mass transfer. J. Ind. Eng. Chem. 20:41993–2002 [Google Scholar]
  46. Kaminsky MP, Huff GA, Calamur N, Spangler MJ. 46.  1997. Catalytic wall reactors and use of catalytic wall reactors for methane coupling and hydrocarbon cracking reactions. J. Mol. Catal. A Chem. 125:2–3156 [Google Scholar]
  47. Tiemersma TP, Chaudhari AS, Gallucci F, Kuipers JAM, van Sint Annaland M. 47.  2012. Integrated autothermal oxidative coupling and steam reforming of methane. Part 1: Design of a dual-function catalyst particle. Chem. Eng. Sci. 82:200–14 [Google Scholar]
  48. Godini HR, Xiao S, Kim M, Görke O, Song S, Wozny G. 48.  2013. Dual-membrane reactor for methane oxidative coupling and dry methane reforming: Reactor integration and process intensification. Chem. Eng. Proc. Proc. Intensif. 74:153–64 [Google Scholar]
  49. Graf PO, Lefferts L. 49.  2009. Reactive separation of ethylene from the effluent gas of methane oxidative coupling via alkylation of benzene to ethylbenzene on ZSM-5. Chem. Eng. Sci. 64:122773–80 [Google Scholar]
  50. Eppinger T, Wehinger G, Kraume M. 50.  2014. Parameter optimization for the oxidative coupling of methane in a fixed bed reactor by combination of response surface methodology and computational fluid dynamics. Chem. Eng. Res. Des. 92:91693–703 [Google Scholar]
  51. Schwach P, Frandsen W, Willinger M-G, Schlögl R, Trunschke A. 51.  2015. Structure sensitivity of the oxidative activation of methane over MgO model catalysts: I. Kinetic study. J. Catal. 329:560–73 [Google Scholar]
  52. Schwach P, Hamilton N, Eichelbaum M, Thum L, Lunkenbein T. 52.  et al. 2015. Structure sensitivity of the oxidative activation of methane over MgO model catalysts: II. Nature of active sites and reaction mechanism. J. Catal. 329:574–87 [Google Scholar]
  53. Kwapien K, Paier J, Sauer J, Geske M, Zavyalova U. 53.  et al. 2014. Sites for methane activation on lithium-doped magnesium oxide surfaces. Angew. Chem. 53:8774–78 doi:10.1002/anie.201310632 [Google Scholar]
  54. Speight JG. 54.  2015. Gasification processes for synthetic liquid fuel production. Gasification for Synthetic Fuel Production: Fundamentals, Processes and Applications R Luque, JG Speight 119–46 Cambridge, UK: Woodhead Publ. [Google Scholar]
  55. Corigliano O, Fragiacomo P. 55.  2015. Technical analysis of hydrogen-rich stream generation through CO2 reforming of biogas by using numerical modeling. Fuel 158:538–48 [Google Scholar]
  56. Fukuhara C, Hyodo R, Yamamoto K, Masuda K, Watanabe R. 56.  2013. A novel nickel-based catalyst for methane dry reforming: A metal honeycomb-type catalyst prepared by sol–gel method and electroless plating. Appl. Catal. A Gen. 468:518–25 [Google Scholar]
  57. Jafarbegloo M, Tarlani A, Mesbah AW, Sahebdelfar S. 57.  2015. Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance. Int. J. Hydrogen Energy 40:62445–51 [Google Scholar]
  58. Taufiq-Yap YH, Sudarno, Rashid U, Zainal Z. 58.  2013. CeO2-SiO2 supported nickel catalysts for dry reforming of methane toward syngas production. Appl. Catal. A Gen. 468:359–69 [Google Scholar]
  59. Alipour Z, Rezaei M, Meshkani F. 59.  2014. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J. Ind. Eng. Chem. 20:52858–63 [Google Scholar]
  60. Yamanaka I, Soma M, Otsuka K. 60.  1995. Oxidation of methane to methanol with oxygen catalysed by europium trichloride at room temperature. J. Chem. Soc. Chem. Commun. 21:2235–36 [Google Scholar]
  61. Arutyunov V. 61.  2013. Low-scale direct methane to methanol—modern status and future prospects. Catal. Today 215:243–50 [Google Scholar]
  62. Periana RA. 62.  1998. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280:560–64 [Google Scholar]
  63. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA. 63.  et al. 2005. Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127:1394–95 Himes RA, Karlin KD. 2009. A new copper-oxo player in methane oxidation. PNAS 106:18877–78 [Google Scholar]
  64. Alayon EM, Nachtegaal M, Ranocchiari M, van Bokhoven. 64.  2012. Catalytic conversion of methane to methanol over CU-mordenite. Chem. Commun. 48:404–406 [Google Scholar]
  65. Alayon EMC, Nachtegaal M, Bodi A, Ranocchiari M, van Bokhoven. 65.  2014. Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Phys. Chem. Chem. Phys. 17:7681–93 [Google Scholar]
  66. Grundner S, Markovits MAC, Li G, Tromp M. 66.  et al. 2015. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 67546 doi:10.1038/ncomms8546
  67. Haynes CA, Gonzalez R. 67.  2014. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10:331 [Google Scholar]
  68. Lorkovic IM, Yilmaz A, Yilmaz GA, Zhou X-P, Laverman LE. 68.  et al. 2004. 2004. Catal. Today 98:1–2317–22 [Google Scholar]
  69. Lorkovic IM, Noy ML, Schenck WA, Belon C. 69.  et al. 2004. C1 oxidative coupling via bromine activation and tandem catalytic condensation and neutralization over CaO/zeolite composites: II. Product distribution variation and full bromine confinement. Catal. Today 98:4589–94 [Google Scholar]
  70. Liu Z, Huang L, Li WS, Yang F, Au CT, Zhou XP. 70.  2007. Higher hydrocarbons from methane condensation mediated by HBr. J. Mol. Catal. A Chem. 273:14–20 [Google Scholar]
  71. West D, Mammadov AKh. 71.  2015. Process for the conversion of methane to c2+ hydrocarbons. Int. Patent No. WO2015069861
  72. van de Loosdrecht J, Niemantsverdriet JW. 72.  2013. Synthesis gas to hydrogen, methanol and synthetic fuels. Chemical Energy Storage R Schlögl 443–58 Berlin: De Gruyter [Google Scholar]
  73. Johnson GR, Werner S, Bustillo KC, Ercius P, Kisielowski C, Bell AT. 73.  2015. Investigations of element spatial correlation in Mn-promoted Co-based Fischer-Tropsch synthesis catalysts. J. Catal. 328:111–22 [Google Scholar]
  74. Banerjee A, van Bavel AP, Kuipers HPCE, Saeys M. 74.  2015. Origin of the formation of nanoislands on cobalt catalysts during Fischer-Tropsch synthesis. ACS Catal. 5:84756–60 [Google Scholar]
  75. Scalbert J, Clemencon I, Lecour P, Braconnier L, Diehl F, Legens C. 75.  2015. Simultaneous investigation of the structure and surface of a Co/alumina catalyst during Fischer–Tropsch synthesis: discrimination of various phenomena with beneficial or disadvantageous impact on activity.. Catal. Sci. Technol. 5:84193–201 [Google Scholar]
  76. Arslan I, Dey S, Roehling JD, Batenburg KJ, Davis BH. 76.  2014. 3-D characterization of Fischer-Tropsch catalysts before and after reduction. Preprints – Am. Chem. Soc. Div. Energy Fuels 59:2832 CODEN: PACSCT [Google Scholar]
  77. Kistamurthy D, Saib AM, Moodley DJ, Niemantsverdriet JW, Weststrate CJ. 77.  2015. Ostwald ripening on a planar Co/SiO2 catalyst exposed to model Frischer-Tropsch synthesis conditions. J. Catal. 328:123–29 CODEN: JCTLA5; ISSN: 0021–9517 [Google Scholar]
  78. 78. Shell Global 2013. Shell will not pursue US Gulf Coast GTL project. Media Release, Dec. 5. Accessed Sept. 3, 2015. http://www.shell.com/global/aboutshell/media/news-and-media-releases/2013/shell-will-not-pursue-us-gulf-coast-gtl-project.html
  79. 79. Sasol 2015. Sasol announces plan to respond to the low oil price environment. Media Release, Jan. 28. Accessed Sept. 3, 2015. http://www.sasol.com/media-centre/media-releases/sasol-announces-plan-respond-low-oil-price-environment
  80. Chang CD, Silvestri AJ. 80.  1977. Synthesis gas conversion to aromatic hydrocarbons. J. Catal. 47:249–59 [Google Scholar]
  81. Tian P, Wei Y, Ye M, Liu Z. 81.  2015. Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal. 5:1922–38 [Google Scholar]
  82. Dahl IM, Kolboe S. 82.  1993. On the reaction mechanism for hydrocarbon formation in the MTO reaction over SAPO-34. Catal. Lett. 20:329–36 [Google Scholar]
  83. Ilias S, Khare R, Malek A, Bhan A. 83.  2013. A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5. J. Catal. 303:135 [Google Scholar]
  84. Xiao T, Shirvani T, Inderwildi O, Gonzalez-Cortes S, AlMegren H, King D, Edwards PP. 84.  2015. The Catalyst Selectivity Index (CSI): a framework and metric to assess the impact of catalyst efficiency enhancements upon energy and CO2 footprints. Top. Catal. 58:10–11682–95 [Google Scholar]
  85. Verlage E, Hu S, Liu R, Jones RJR, Sun K. 85.  et al. 2015. A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films. Energy Environ. Sci. 8:3166–72 [Google Scholar]
  86. Knör G. 86.  2015. Antimony porphyrins as red-light powered photocatalysts for solar fuel production from halide solutions in the presence of air. Coord. Chem. Rev. 304–5:102–8 [Google Scholar]
  87. Soriaga MP, Baricuatro JH, Cummins KD, Kim Y-G, Saadi FH. 87.  et al. 2015. Electrochemical surface science twenty years later: expeditions into the electrocatalysis of reactions at the core of artificial photosynthesis. Surf. Sci. 631:285–94 [Google Scholar]
  88. 88. Service RF 2015. Tailpipe to tank. Science 349:1158 [Google Scholar]
  89. Lin S, Diercks CS, Zhang Y-B, Kornienko N, Nichols EM. 89.  et al. 2015. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349:1208 [Google Scholar]
  90. Styring P, Quadrelli EA, Armstrong K. 90.  2014. Carbon Dioxide Utilisation Philadelphia: Elsevier, 1st ed..
  91. Freitas ACD, Guirardello R. 91.  2015. Use of CO2 as a co-reactant to promote syngas production in supercritical water gasification of sugarcane bagasse. J. CO2 Util. 9:66–73 [Google Scholar]
  92. Zhang C, Jun K-W, Gao R, Lee Y-J, Kang SC. 92.  2015. Efficient utilization of carbon dioxide in gas-to-liquids process: Process simulation and techno-economic analysis. Fuel 157:285–91 [Google Scholar]
  93. Stechel EB, Miller JE. 93.  2013. Re-energizing CO2 to fuels with the sun: Issues of efficiency, scale, and economics. J. CO2 Util. 1:28–36 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-080615-034616
Loading
/content/journals/10.1146/annurev-chembioeng-080615-034616
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error