skip to main content
10.1145/3535508.3545590acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Scalable deep learning for healthcare: methods and applications

Published:07 August 2022Publication History

ABSTRACT

This paper provides an overview on scalable deep learning platforms and how they are used in medical context. An introduction highlights the key factors, then an overview on medical context is provided. Afterwards, the basic concepts about deep learning and parallel and distributed computing are briefly recalled. Then a specific deep learning library for medical applications is described. The last part of the paper is focused on a real use case application of deep learning on medical data. As a result, the main contribution of this paper is a short survey on main scalable deep learning platforms with a first analysis of their features, and the description of a practical example.

References

  1. Anaconda, Inc 2016. Anaconda Software Distribution. Anaconda, Inc. https://anaconda.com/Google ScholarGoogle Scholar
  2. 2019. Deep Health - Deep-Learning and HPC to Boost Biomedical Applications for Health. https://deephealth-project.eu/.Google ScholarGoogle Scholar
  3. Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv:1603.04467 [cs] (March 2016). arXiv:1603.04467 [cs]Google ScholarGoogle Scholar
  4. Giuseppe Agapito, Mario Cannataro, Pietro Hiram Guzzi, Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. 2013. Cloud4SNP: Distributed Analysis of SNP Microarray Data on the Cloud. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics. ACM, Wshington DC USA, 468--475. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Abien Fred Agarap. 2019. Deep Learning Using Rectified Linear Units (ReLU). arXiv:1803.08375 [cs, stat] (Feb. 2019). arXiv:1803.08375 [cs, stat]Google ScholarGoogle Scholar
  6. Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad Awais, Majdi Alnowami, and Muhammad Khurram Khan. 2018. Medical Image Analysis Using Convolutional Neural Networks: A Review. Journal of Medical Systems 42, 11 (Nov. 2018), 226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Ekaba Bisong. 2019. Google Colaboratory. Apress, Berkeley, CA, 59--64. Google ScholarGoogle ScholarCross RefCross Ref
  8. G. Bradski. 2000. The OpenCV Library. Dr. Dobb's Journal of Software Tools (2000).Google ScholarGoogle Scholar
  9. Mario Cannataro, Pietro Hiram Guzzi, and Alessia Sarica. 2013. Data Mining and Life Sciences Applications on the Grid: Data Mining and Life Sciences Applications on the Grid. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 3, 3 (May 2013), 216--238. Google ScholarGoogle ScholarCross RefCross Ref
  10. Francois Chollet et al. 2015. Keras. https://github.com/fchollet/keras.Google ScholarGoogle Scholar
  11. Alex Clark. 2015. Pillow (PIL Fork) Documentation.Google ScholarGoogle Scholar
  12. Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. 2002. Torch: A Modular Machine Learning Software Library. Technical Report. Idiap.Google ScholarGoogle Scholar
  13. Alexander Craik, Yongtian He, and Jose L Contreras-Vidal. 2019. Deep Learning for Electroencephalogram (EEG) Classification Tasks: A Review. Journal of Neural Engineering 16, 3 (June 2019), 031001. Google ScholarGoogle ScholarCross RefCross Ref
  14. Rodrigo Crespo-Cepeda, Giuseppe Agapito, Jose Luis Vazquez-Poletti, and Mario Cannataro. 2019. Challenges and Opportunities of Amazon Serverless Lambda Services in Bioinformatics. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. ACM, Niagara Falls NY USA, 663--668. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Li Deng. 2012. The Mnist Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal Processing Magazine 29, 6 (2012), 141--142.Google ScholarGoogle ScholarCross RefCross Ref
  16. Endre Grøvik, Darvin Yi, Michael Iv, Elizabeth Tong, Daniel Rubin, and Greg Zaharchuk. 2020. Deep Learning Enables Automatic Detection and Segmentation of Brain Metastases on Multisequence MRI. Journal of Magnetic Resonance Imaging 51, 1 (Jan. 2020), 175--182. Google ScholarGoogle ScholarCross RefCross Ref
  17. Vishakh Hegde and Sheema Usmani. 2016. Parallel and Distributed Deep Learning. (2016), 8.Google ScholarGoogle Scholar
  18. Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory. Neural Computation 9, 8 (Nov. 1997), 1735--1780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv:1408.5093 [cs] (June 2014). arXiv:1408.5093 [cs]Google ScholarGoogle Scholar
  20. Andreas M. Kist. 2021. Deep Learning on Edge TPUs. arXiv:2108.13732 [cs] (Aug. 2021). arXiv:2108.13732 [cs]Google ScholarGoogle Scholar
  21. Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. 2016. Jupyter Notebooks - a publishing format for reproducible computational workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas, F. Loizides and B. Schmidt (Eds.). IOS Press, 87 -- 90.Google ScholarGoogle Scholar
  22. Fatma Murat, Ozal Yildirim, Muhammed Talo, Ulas Baran Baloglu, Yakup Demir, and U. Rajendra Acharya. 2020. Application of Deep Learning Techniques for Heartbeats Detection Using ECG Signals-Analysis and Review. Computers in Biology and Medicine 120 (May 2020), 103726. Google ScholarGoogle ScholarCross RefCross Ref
  23. NVIDIA. 2022. NVIDIA Tensor Cores: Versatility for HPC & AI. https://www.nvidia.com/en-us/data-center/tensor-cores/.Google ScholarGoogle Scholar
  24. NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. 2020. Nvidia CUDA.Google ScholarGoogle Scholar
  25. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. arXiv:1912.01703 [cs, stat] (Dec. 2019). arXiv:1912.01703 [cs, stat]Google ScholarGoogle Scholar
  26. Pierre Raybaut. 2009. Spyder-Documentation. Available online at: pythonhosted.org (2009).Google ScholarGoogle Scholar
  27. Alessia Sarica, Antonio Cerasa, Roberta Vasta, Paolo Perrotta, Paola Valentino, Graziella Mangone, Pietro H. Guzzi, Federico Rocca, Matteo Nonnis, Mario Cannataro, and Aldo Quattrone. 2014. Tractography in Amyotrophic Lateral Sclerosis Using a Novel Probabilistic Tool: A Study with Tract-Based Reconstruction Compared to Voxel-Based Approach. Journal of Neuroscience Methods 224 (March 2014), 79--87. Google ScholarGoogle ScholarCross RefCross Ref
  28. Alex Sherstinsky. 2020. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena 404 (March 2020), 132306. Google ScholarGoogle ScholarCross RefCross Ref
  29. Eduardo Soares, Plamen Angelov, Sarah Biaso, Michele Higa Froes, and Daniel Kanda Abe. 2020. SARS-CoV-2 CT-scan Dataset: A Large Dataset of Real Patients CT Scans for SARS-CoV-2 Identification. Preprint. Health Informatics. Google ScholarGoogle ScholarCross RefCross Ref
  30. Sudarshan Srinivasan, Pradeep Janedula, Saurabh Dhoble, Sasikanth Avancha, Dipankar Das, Naveen Mellempudi, Bharat Daga, Martin Langhammer, Gregg Baeckler, and Bharat Kaul. 2019. High Performance Scalable FPGA Accelerator for Deep Neural Networks. arXiv:1908.11809 [cs] (Aug. 2019). arXiv:1908.11809 [cs]Google ScholarGoogle Scholar
  31. The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, and Ying Zhang. 2016. Theano: A Python Framework for Fast Computation of Mathematical Expressions. arXiv:1605.02688 [cs] (May 2016). arXiv:1605.02688 [cs]Google ScholarGoogle Scholar
  32. J. Teye Brown and Walid Zgallai. 2020. Deep EEG: Deep Learning in Biomedical Signal Processing with EEG Applications. In Biomedical Signal Processing and Artificial Intelligence in Healthcare. Elsevier, 113--151. Google ScholarGoogle ScholarCross RefCross Ref
  33. Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray. 2020. Testing DNN Image Classifiers for Confusion & Bias Errors. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (June 2020), 1122--1134. arXiv:1905.07831 Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Scalable deep learning for healthcare: methods and applications

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in
              • Published in

                cover image ACM Conferences
                BCB '22: Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
                August 2022
                549 pages
                ISBN:9781450393867
                DOI:10.1145/3535508

                Copyright © 2022 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 7 August 2022

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

                Acceptance Rates

                Overall Acceptance Rate254of885submissions,29%

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader