skip to main content
research-article
Open Access

NeRF: representing scenes as neural radiance fields for view synthesis

Published:17 December 2021Publication History
Skip Abstract Section

Abstract

We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully connected (nonconvolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x, y, z) and viewing direction (θ, ϕ)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis.

References

  1. Buehler, C., Bosse, M., McMillan, L., Gortler S., Cohen, M. Unstructured lumigraph rendering. In SIGGRAPH (2001).Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Chang, A.X., Fhnkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., et al. ShapeNet: An information-rich 3D model repository. arXiv:1512.03012 (2015).Google ScholarGoogle Scholar
  3. Curless, B., Levoy, M. A volumetric method for building complex models from range images. In SIGGRAPH (1996).Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Debevec, P., Taylor, C.J., Malik, J. Modeling and rendering architecture from photographs: A hybrid geometry-and image-based approach. In SIGGRAPH (1996).Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Kajiya, J.T., Herzen, B.P.V. Ray tracing volume densities. Comput. Graph. (SIGGRAPH) (1984).Google ScholarGoogle Scholar
  6. Kingma, D.P., Ba, J. Adam: A method for stochastic optimization. In ICLR (2015).Google ScholarGoogle Scholar
  7. Li, T.-M., Aittala, M., Durand, F., Lehtinen, J. Differentiable monte carlo ray tracing through edge sampling. ACM Trans. Graph. (SIGGRAPH Asia) (2018).Google ScholarGoogle Scholar
  8. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y. Neural volumes: Learning dynamic renderable volumes from images. ACM Trans. Graph. (SIGGRAPH) (2019).Google ScholarGoogle Scholar
  9. Loper, M.M., Black, M.J. OpenDR: An approximate differentiable renderer. In ECCV (2014).Google ScholarGoogle ScholarCross RefCross Ref
  10. Max, N. Optical models for direct volume rendering. IEEE Trans. Visual. Comput. Graph. (1995).Google ScholarGoogle Scholar
  11. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A. Occupancy networks: Learning 3D reconstruction in function space. In CVPR (2019).Google ScholarGoogle ScholarCross RefCross Ref
  12. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi, R., Ng, R., Kar, A. Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (SIGGRAPH) (2019).Google ScholarGoogle Scholar
  13. Mildenhall, B., Srinivasan, P.P, Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R. NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV (2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A. Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision. In CVPR (2019).Google ScholarGoogle Scholar
  15. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S. DeepSDF: Learning continuous signed distance functions for shape representation. In CVPR (2019).Google ScholarGoogle ScholarCross RefCross Ref
  16. Porter, T., Duff, T. Compositing digital images. Comput. Graph. (SIGGRAPH) (1984).Google ScholarGoogle Scholar
  17. Rahaman, N., Baratin, A., Arpit, D., Dräxler, F., Lin, M., Hamprecht, F.A., Bengio, Y., Courville, A.C. On the spectral bias of neural networks. In ICML (2018).Google ScholarGoogle Scholar
  18. Schönberger, J.L., Frahm, J.-M. Structure-from-motion revisited. In CVPR (2016).Google ScholarGoogle ScholarCross RefCross Ref
  19. Seitz, S.M., Dyer, C.R. Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vision (1999).Google ScholarGoogle Scholar
  20. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M. Deepvoxels: Learning persistent 3D feature embeddings. In CVPR (2019).Google ScholarGoogle ScholarCross RefCross Ref
  21. Sitzmann, V., Zollhoefer, M., Wetzstein, G. Scene representation networks: Continuous 3D-structure-aware neural scene representations. In NeurIPS (2019).Google ScholarGoogle Scholar
  22. Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T., Ng, R. Fourier features let networks learn high frequency functions in low dimensional domains. In NeurIPS (2020).Google ScholarGoogle Scholar
  23. Wood, D.N., Azuma, D.I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D.H., Stuetzle, W. Surface light fields for 3D photography. In SIGGRAPH (2000).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR (2018).Google ScholarGoogle ScholarCross RefCross Ref
  25. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N. Stereo magnification: Learning view synthesis using multiplane images. ACM Trans. Graph. (SIGGRAPH) (2018).Google ScholarGoogle Scholar

Index Terms

  1. NeRF: representing scenes as neural radiance fields for view synthesis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image Communications of the ACM
      Communications of the ACM  Volume 65, Issue 1
      January 2022
      106 pages
      ISSN:0001-0782
      EISSN:1557-7317
      DOI:10.1145/3507640
      Issue’s Table of Contents

      Copyright © 2021 Owner/Author

      This work is licensed under a Creative Commons Attribution International 4.0 License.

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 December 2021

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format