skip to main content
10.1145/3491102.3517715acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Tangible Globes for Data Visualisation in Augmented Reality

Published:29 April 2022Publication History

ABSTRACT

Head-mounted augmented reality (AR) displays allow for the seamless integration of virtual visualisation with contextual tangible references, such as physical (tangible) globes. We explore the design of immersive geospatial data visualisation with AR and tangible globes. We investigate the “tangible-virtual interplay” of tangible globes with virtual data visualisation, and propose a conceptual approach for designing immersive geospatial globes. We demonstrate a set of use cases, such as augmenting a tangible globe with virtual overlays, using a physical globe as a tangible input device for interacting with virtual globes and maps, and linking an augmented globe to an abstract data visualisation. We gathered qualitative feedback from experts about our use case visualisations, and compiled a summary of key takeaways as well as ideas for envisioned future improvements. The proposed design space, example visualisations and lessons learned aim to guide the design of tangible globes for data visualisation in AR.

Skip Supplemental Material Section

Supplemental Material

3491102.3517715-video-figure.mp4

mp4

81.7 MB

3491102.3517715-video-preview.mp4

mp4

37.6 MB

References

  1. Benjamin Bach, Ronell Sicat, Johanna Beyer, Maxime Cordeil, and Hanspeter Pfister. 2017. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?IEEE Transactions on Visualization and Computer Graphics 24, 1(2017), 457–467. https://doi.org/10.1109/TVCG.2017.2745941Google ScholarGoogle ScholarCross RefCross Ref
  2. Michel Beaudouin-Lafon. 2004. Designing Interaction, Not Interfaces. In Proceedings of the Working Conference on Advanced Visual Interfaces (Gallipoli, Italy) (AVI ’04). ACM, New York, NY, USA, 15–22. https://doi.org/10.1145/989863.989865Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Hrvoje Benko, Andrew D Wilson, and Ravin Balakrishnan. 2008. Sphere: multi-touch interactions on a spherical display. In Proceedings of the 21st Annual ACM Symposium on User Interface Software and Technology. ACM, Monterey, CA, USA, 77–86. https://doi.org/10.1145/1449715.1449729Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Mark Billinghurst, Raphael Grasset, and Julian Looser. 2005. Designing augmented reality interfaces. ACM SIGGRAPH Computer Graphics 39, 1 (2005), 17–22. https://doi.org/10.1145/1057792.1057803Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Mark Billinghurst, Hirokazu Kato, Ivan Poupyrev, 2008. Tangible augmented reality. ACM SIGGRAPH Asia 7, 2 (2008), 1–10.Google ScholarGoogle Scholar
  6. Mike Bostock. 2019. d3-geo. https://github.com/d3/d3-geo/blob/main/src/rotation.jsGoogle ScholarGoogle Scholar
  7. BPM Australia PTY Limited. 2021. Smart Globe Explorer AR. https://oregonshop.com.au/smart-globe-explorer-ar/Google ScholarGoogle Scholar
  8. Wolfgang Büschel, Anke Lehmann, and Raimund Dachselt. 2021. MIRIA: A Mixed Reality Toolkit for the In-Situ Visualization and Analysis of Spatio-Temporal Interaction Data. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, Yokohama, Japan, 1–15. https://doi.org/10.1145/3411764.3445651Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Wolfgang Büschel, Annett Mitschick, Thomas Meyer, and Raimund Dachselt. 2019. Investigating smartphone-based pan and zoom in 3D data spaces in augmented reality. In Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services. ACM, Taipei, Taiwan, 1–13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Marcio Cabral, F Ferreira, Olavo Belloc, Gregor Miller, C Kurashima, R Lopes, Ian Stavness, J Anacleto, Sidney Fels, and M Zuffo. 2015. Portable-Spheree: A portable 3D perspective-corrected interactive spherical scalable display. In 2015 IEEE Virtual Reality (VR). IEEE, Arles, France, 157–158. https://doi.org/10.1109/VR.2015.7223343Google ScholarGoogle ScholarCross RefCross Ref
  11. Stuart Card. 2012. Information Visualization. In The Human–Computer Interaction Handbook. CRC Press, New York, USA, 515–548.Google ScholarGoogle Scholar
  12. Marco Cavallo, Mishal Dholakia, Matous Havlena, Kenneth Ocheltree, and Mark Podlaseck. 2019. Dataspace: A reconfigurable hybrid reality environment for collaborative information analysis. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Osaka, Japan, 145–153.Google ScholarGoogle ScholarCross RefCross Ref
  13. Tom Chandler, Maxime Cordeil, Tobias Czauderna, Tim Dwyer, Jaroslaw Glowacki, Cagatay Goncu, Matthias Klapperstueck, Karsten Klein, Kim Marriott, Falk Schreiber, 2015. Immersive Analytics. In 2015 Big Data Visual Analytics (BDVA). IEEE, Hobart, Tasmania, Australia, 1–8. https://doi.org/10.1109/BDVA.2015.7314296Google ScholarGoogle ScholarCross RefCross Ref
  14. Zhutian Chen, Wai Tong, Qianwen Wang, Benjamin Bach, and Huamin Qu. 2020. Augmenting static visualizations with PapARVis designer. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu, Hawaii, USA, 1–12. https://doi.org/10.1145/3313831.3376436Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Seán Clarke, Antonio Voce, Pablo Gutiérrez, and Frank Hulley-Jones. 2020. How coronavirus spread across the globe – visualised. https://www.theguardian.com/world/ng-interactive/2020/apr/09/how-coronavirus-spread-across-the-globe-visualisedGoogle ScholarGoogle Scholar
  16. Maxime Cordeil, Benjamin Bach, Andrew Cunningham, Bastian Montoya, Ross T Smith, Bruce H Thomas, and Tim Dwyer. 2020. Embodied Axes: Tangible, Actuated Interaction for 3D Augmented Reality Data Spaces. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu, Hawaii, USA, 1–12. https://doi.org/10.1145/3313831.3376613Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Maxime Cordeil, Benjamin Bach, Yongchao Li, Elliott Wilson, and Tim Dwyer. 2017. A Design Space for Spatio-Data Coordination: Tangible Interaction Devices for Immersive Information Visualisation. In 2017 IEEE Pacific Visualization Symposium (PacificVis). IEEE, Seoul, South Korea, 46–50. https://doi.org/10.1109/PACIFICVIS.2017.8031578Google ScholarGoogle ScholarCross RefCross Ref
  18. Maxime Cordeil, Andrew Cunningham, Benjamin Bach, Christophe Hurter, Bruce H Thomas, Kim Marriott, and Tim Dwyer. 2019. IATK: An Immersive Analytics Toolkit. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Osaka, Japan, 200–209. https://doi.org/10.1109/VR.2019.8797978Google ScholarGoogle ScholarCross RefCross Ref
  19. Maxime Cordeil, Andrew Cunningham, Tim Dwyer, Bruce H Thomas, and Kim Marriott. 2017. ImAxes: Immersive Axes as Embodied Affordances for Interactive Multivariate Data Visualisation. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. ACM, Québec City, Canada, 71–83. https://doi.org/10.1145/3126594.3126613Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hessam Djavaherpour, Ali Mahdavi-Amiri, and Faramarz F Samavati. 2017. Physical visualization of geospatial datasets. IEEE Computer Graphics and Applications 37, 3 (2017), 61–69. https://doi.org/10.1109/MCG.2017.38Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Paul Dourish. 2001. Where the action is. MIT press Cambridge, Massachusetts, USA.Google ScholarGoogle Scholar
  22. Adam Drogemuller, James Walsh, Ross T Smith, Matt Adcock, and Bruce H Thomas. 2021. Turning everyday objects into passive tangible controllers. In Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction. ACM, Salzburg, Austria, 1–4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Josh Dye, Craig Butt, Richard Lama, and Mark Stehle. 2020. Silent Skies. https://www.theage.com.au/interactive/2020/coronavirus/silent-skies/index.htmlGoogle ScholarGoogle Scholar
  24. Michelle Enemark. 2021. Eartha. https://www.atlasobscura.com/places/eartha-delorme-headquartersGoogle ScholarGoogle Scholar
  25. David Englmeier. 2019. Spherical Objects as an Opportunity to Investigate Physical Embodiment in Mixed Reality Environments. In Mensch und Computer 2019 - Workshopband. Gesellschaft für Informatik e.V., Hamburg, Germany, 110–112. https://dx.doi.org/10.18420/muc2019-ws-454Google ScholarGoogle ScholarCross RefCross Ref
  26. David Englmeier. 2021. Spherical tangible user interfaces in mixed reality. Ph.D. Dissertation. Ludwig-Maximilians-Universität München, Germany. https://doi.org/10.5282/edoc.28294Google ScholarGoogle ScholarCross RefCross Ref
  27. David Englmeier, Julia Dörner, Andreas Butz, and Tobias Höllerer. 2020. A tangible spherical proxy for object manipulation in augmented reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Atlanta, USA, 221–229. https://doi.org/10.1109/VR46266.2020.00041Google ScholarGoogle ScholarCross RefCross Ref
  28. David Englmeier, Fan Fan, and Andreas Butz. 2020. Rock or roll–locomotion techniques with a handheld spherical device in virtual reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, Porto de Galinhas, Brazil, 618–626. https://doi.org/10.1109/ISMAR50242.2020.00089Google ScholarGoogle ScholarCross RefCross Ref
  29. David Englmeier, Joseph O’Hagan, Mengyi Zhang, Florian Alt, Andreas Butz, Tobias Höllerer, and Julie Williamson. 2020. TangibleSphere–Interaction Techniques for Physical and Virtual Spherical Displays. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society. ACM, Tallinn, Estonia, 1–11. https://doi.org/10.1145/3419249.3420101Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. David Englmeier, Wanja Sajko, and Andreas Butz. 2021. Spherical World in Miniature: Exploring the Tiny Planets Metaphor for Discrete Locomotion in Virtual Reality. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR). IEEE, Lisboa, Portugal, 345–352. https://doi.org/10.1109/VR50410.2021.00057Google ScholarGoogle ScholarCross RefCross Ref
  31. David Englmeier, Isabel Schönewald, Andreas Butz, and Tobias Höllerer. 2019. Feel the globe: Enhancing the perception of immersive spherical visualizations with tangible proxies. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Osaka, Japan, 1693–1698. https://doi.org/10.1109/VR.2019.8797869Google ScholarGoogle ScholarCross RefCross Ref
  32. David Englmeier, Isabel Schönewald, Andreas Butz, and Tobias Höllerer. 2019. Sphere in hand: Exploring tangible interaction with immersive spherical visualizations. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Osaka, Japan, 912–913. https://doi.org/10.1109/VR.2019.8797887Google ScholarGoogle ScholarCross RefCross Ref
  33. Barrett Ens, Juan David Hincapié-Ramos, and Pourang Irani. 2014. Ethereal planes: a design framework for 2D information space in 3D mixed reality environments. In Proceedings of the 2nd ACM Symposium on Spatial User Interaction. ACM, New York, USA, 2–12. https://doi.org/10.1145/2659766.2659769Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Barrett Ens and Pourang Irani. 2016. Spatial analytic interfaces: Spatial user interfaces for in situ visual analytics. IEEE Computer Graphics and Applications 37, 2 (2016), 66–79. https://doi.org/10.1109/MCG.2016.38Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Dan Evans. 2020. World Bank WDI 2.12 - Health Systems – World Development Indicators for 2016. https://www.kaggle.com/danevans/world-bank-wdi-212-health-systemsGoogle ScholarGoogle Scholar
  36. Dylan Brodie Fafard, Qian Zhou, Chris Chamberlain, Georg Hagemann, Sidney Fels, and Ian Stavness. 2018. Design and implementation of a multi-person fish-tank virtual reality display. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology. ACM, New York, USA, 1–9. https://doi.org/10.1145/3281505.3281540Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Steven Feiner, Blair MacIntyre, Marcus Haupt, and Eliot Solomon. 1993. Windows on the world: 2D windows for 3D augmented reality. In Proceedings of the 6th annual ACM Symposium on User Interface Software and Technology. ACM, New York, USA, 145–155. https://doi.org/10.1145/168642.168657Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Thomas Feix, Ian M Bullock, and Aaron M Dollar. 2014. Analysis of human grasping behavior: Object characteristics and grasp type. IEEE Transactions on Haptics 7, 3 (2014), 311–323. https://doi.org/10.1109/TOH.2014.2326871Google ScholarGoogle ScholarCross RefCross Ref
  39. Kiran J Fernandes, Vinesh Raja, and Julian Eyre. 2003. Cybersphere: the fully immersive spherical projection system. Commun. ACM 46, 9 (2003), 141–146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Fernando Ferreira, Marcio Cabral, Olavo Belloc, Gregor Miller, Celso Kurashima, Roseli de Deus Lopes, Ian Stavness, Junia Anacleto, Marcelo Zuffo, and Sidney Fels. 2014. Spheree: a 3d perspective-corrected interactive spherical scalable display. In ACM SIGGRAPH 2014 Posters. ACM, Vancouver, Canada, 1–1. https://doi.org/10.1145/2614217.2630585Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Mátyás Gede. 2009, 2013. Virtual Globes Museum. http://terkeptar.elte.hu/vgm/?lang=enGoogle ScholarGoogle Scholar
  42. GeoNames. 2021. GeoNames. http://www.geonames.org/Google ScholarGoogle Scholar
  43. Zeinab Ghaemi, Ulrich Engelke, Barrett Ens, and Bernhard Jenny. 2022. Proxemic maps for immersive visualization. Cartography and Geographic Information Science 0, 0 (2022), 1–15. https://doi.org/10.1080/15230406.2021.2013946Google ScholarGoogle ScholarCross RefCross Ref
  44. Jerônimo Gustavo Grandi, Henrique Galvan Debarba, Luciana Nedel, and Anderson Maciel. 2017. Design and evaluation of a handheld-based 3d user interface for collaborative object manipulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, Denver, Colorado, USA, 5881–5891.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Nicholas R Hedley, Mark Billinghurst, Lori Postner, Richard May, and Hirokazu Kato. 2002. Explorations in the use of augmented reality for geographic visualization. Presence 11, 2 (2002), 119–133. https://doi.org/10.1162/1054746021470577Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Jeffrey Heer and Michael Bostock. 2010. Crowdsourcing graphical perception: using mechanical turk to assess visualization design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Atlanta, Georgia, USA, 203–212. https://doi.org/10.1145/1753326.1753357Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Henk Caspers/Naturalis Biodiversity Center. 2012. Museum Naturalis in Leiden. Exhibition Earth. Huge globe with Africa showing, overview. https://commons.wikimedia.org/w/index.php?title=File:Naturalis_Biodiversity_Center_-_Museum_-_Exhibition_Earth_08_-_Huge_globe_with_Africa_showing,_overview.jpgGoogle ScholarGoogle Scholar
  48. Anuruddha Hettiarachchi and Daniel Wigdor. 2016. Annexing reality: Enabling opportunistic use of everyday objects as tangible proxies in augmented reality. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, San Jose, California, USA, 1957–1967.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Sebastian Hubenschmid, Johannes Zagermann, Simon Butscher, and Harald Reiterer. 2021. STREAM: Exploring the Combination of Spatially-Aware Tablets with Augmented Reality Head-Mounted Displays for Immersive Analytics. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, Yokohama, Japan, 1–14. https://doi.org/10.1145/3411764.3445298Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Lorenz Hurni (ed.). 2017. Schweizer Weltatlas–Atlas Mondial Suisse–Atlante Mondiale Svizzera. EDK Schweizerische Konferenz der kantonalen Erziehungsdirektoren, Lehrmittelverlag Zürich, Switzerland.Google ScholarGoogle Scholar
  51. Bret Jackson, Tung Yuen Lau, David Schroeder, Kimani C Toussaint, and Daniel F Keefe. 2013. A lightweight tangible 3D interface for interactive visualization of thin fiber structures. IEEE transactions on visualization and computer graphics 19, 12(2013), 2802–2809.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Mikkel R Jakobsen, Yonas Sahlemariam Haile, Søren Knudsen, and Kasper Hornbæk. 2013. Information visualization and proxemics: Design opportunities and empirical findings. IEEE Transactions on Visualization and Computer Graphics 19, 12(2013), 2386–2395. https://doi.org/10.1109/TVCG.2013.166Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Waqas Javed and Niklas Elmqvist. 2012. Exploring the design space of composite visualization. In 2012 IEEE Pacific Visualization Symposium. IEEE, Songdo, South Korea, 1–8. https://doi.org/10.1109/PacificVis.2012.6183556Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Lucinda Kerawalla, Rosemary Luckin, Simon Seljeflot, and Adrian Woolard. 2006. “Making it real”: exploring the potential of augmented reality for teaching primary school science. Virtual Reality 10, 3-4 (2006), 163–174. https://doi.org/10.1007/s10055-006-0036-4Google ScholarGoogle ScholarCross RefCross Ref
  55. Nurit Kirshenbaum, James Hutchison, Ryan Theriot, Dylan Kobayashi, and Jason Leigh. 2020. Data in Context: Engaging Audiences with 3D Physical Geo-Visualization. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu, Hawaii, USA, 1–9. https://doi.org/10.1145/3334480.3382968Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Krzysztof Jakub Kruszyński and Robert van Liere. 2009. Tangible props for scientific visualization: concept, requirements, application. Virtual reality 13, 4 (2009), 235–244.Google ScholarGoogle Scholar
  57. Hideaki Kuzuoka, Naomi Yamashita, Hiroshi Kato, Hideyuki Suzuki, and Yoshihiko Kubota. 2014. Tangible earth: tangible learning environment for astronomy education. In Proceedings of the Second International Conference on Human-agent Interaction. ACM, Tsukuba, Japan, 23–27. https://doi.org/10.1145/2658861.2658870Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Ricardo Langner, Marc Satkowski, Wolfgang Büschel, and Raimund Dachselt. 2021. MARVIS: Combining Mobile Devices and Augmented Reality for Visual Data Analysis. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, Yokohama, Japan, 1–17. https://doi.org/10.1145/3411764.3445593Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Gun A Lee, Claudia Nelles, Mark Billinghurst, and Gerard Jounghyun Kim. 2004. Immersive authoring of tangible augmented reality applications. In Third IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, USA, 172–181. https://doi.org/10.1109/ISMAR.2004.34Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Kangdon Lee. 2012. Augmented reality in education and training. TechTrends 56, 2 (2012), 13–21. https://doi.org/10.1007/s11528-012-0559-3Google ScholarGoogle ScholarCross RefCross Ref
  61. Zhengqing Li, Liwei Chan, Theophilus Teo, and Hideki Koike. 2020. OmniGlobeVR: A collaborative 360° communication system for VR. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu, Hawaii, USA, 1–8.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Zhengqing Li, Shio Miyafuji, Erwin Wu, Hideaki Kuzuoka, Naomi Yamashita, and Hideki Koike. 2019. OmniGlobe: An Interactive I/O System For Symmetric 360-Degree Video Communication. In Proceedings of the 2019 on Designing Interactive Systems Conference. ACM, California, USA, 1427–1438. https://doi.org/10.1145/3322276.3322314Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Jiazhou Liu, Arnaud Prouzeau, Barrett Ens, and Tim Dwyer. 2020. Design and evaluation of interactive small multiples data visualisation in immersive spaces. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Atlanta, USA, 588–597. https://doi.org/10.1109/VR46266.2020.00081Google ScholarGoogle ScholarCross RefCross Ref
  64. Julian Looser, Mark Billinghurst, and Andy Cockburn. 2004. Through the looking glass: the use of lenses as an interface tool for Augmented Reality interfaces. In Proceedings of the 2nd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia. ACM, Singapore, 204–211. https://doi.org/10.1145/988834.988870Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Julian Looser, Raphael Grasset, and Mark Billinghurst. 2007. A 3D flexible and tangible magic lens in augmented reality. In 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE, USA, 51–54. https://doi.org/10.1109/ISMAR.2007.4538825Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Thibault Louis and Francois Berard. 2017. Superiority of a handheld perspective-coupled display in isomorphic docking performances. In Proceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces. ACM, Brighton, UK, 72–81. https://doi.org/10.1145/3132272.3134124Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Thibault Louis, Jocelyne Troccaz, Amélie Rochet-Capellan, and François Bérard. 2020. Gyrosuite: General-purpose interactions for handheld perspective corrected displays. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology. ACM, Virtual Event, USA, 1248–1260. https://doi.org/10.1145/3379337.3415893Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Marlon Lückert. 2020. CovidAR - Data Visualization in Augmented Reality. https://devpost.com/software/covidar-data-visualization-in-augmented-realityGoogle ScholarGoogle Scholar
  69. Tahir Mahmood, Erik Butler, Nicholas Davis, Jian Huang, and Aidong Lu. 2018. Building multiple coordinated spaces for effective immersive analytics through distributed cognition. In 2018 International Symposium on Big Data Visual and Immersive Analytics (BDVA). IEEE, Konstanz, Germany, 1–11. https://doi.org/10.1109/BDVA.2018.8533893Google ScholarGoogle ScholarCross RefCross Ref
  70. Kim Marriott, Falk Schreiber, Tim Dwyer, Karsten Klein, Nathalie Henry Riche, Takayuki Itoh, Wolfgang Stuerzlinger, and Bruce H Thomas. 2018. Immersive Analytics. Vol. 11190. Springer, Berlin, Germany.Google ScholarGoogle Scholar
  71. Hovhannes Mayilyan. 2019. Augmented reality in education, ar globe project assessment in actual teaching-learning environment. International Journal of Learning, Teaching and Educational Research 18, 3(2019), 1–14.Google ScholarGoogle ScholarCross RefCross Ref
  72. Hovhannes Mayilyan. 2019. Implementation of Augmented Reality Globe in Teaching-Learning Environment. In 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, California, USA, 389–390. https://doi.org/10.1109/MIPR.2019.00078Google ScholarGoogle ScholarCross RefCross Ref
  73. Microsoft. 2015. Globe Map. https://appsource.microsoft.com/en-us/product/power-bi-visuals/WA104380799Google ScholarGoogle Scholar
  74. MobilizAR Technologies Pvt Ltd. 2021. Orboot Earth – Interactive AR Globe. https://www.playshifu.com/orboot/earthGoogle ScholarGoogle Scholar
  75. Yusuke Morita and Norio Setozaki. 2017. Learning by tangible learning system in science class. In International Conference on Human-Computer Interaction. Springer, Vancouver, Canada, 341–352. https://doi.org/10.1007/978-3-319-58077-7_27Google ScholarGoogle ScholarCross RefCross Ref
  76. Tamara Munzner. 2014. Visualization analysis and design. CRC press, Florida, USA.Google ScholarGoogle Scholar
  77. John R Napier. 1956. The prehensile movements of the human hand. The Journal of Bone and Joint Surgery. British volume 38, 4(1956), 902–913. https://doi.org/10.1007/978-1-4471-5451-8_85Google ScholarGoogle ScholarCross RefCross Ref
  78. NASA GISS. 2021. G.Projector — Map Projections. https://www.giss.nasa.gov/tools/gprojector/Google ScholarGoogle Scholar
  79. Natural Earth. 2018. Populated Places. https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-populated-places/Google ScholarGoogle Scholar
  80. Rhys Newbury, Kadek Ananta Satriadi, Jesse Bolton, Jiazhou Liu, Maxime Cordeil, Arnaud Prouzeau, and Bernhard Jenny. 2021. Embodied gesture interaction for immersive maps. Cartography and Geographic Information Science 48, 5 (2021), 417–431. https://doi.org/10.1080/15230406.2021.1929492Google ScholarGoogle ScholarCross RefCross Ref
  81. Raluca Nicola. 2018. World population count. https://ralucanicola.github.io/JSAPI_demos/world-population/Google ScholarGoogle Scholar
  82. Raluca Nicola. 2021. Major earthquakes in 2019. https://ralucanicola.github.io/earthquakes-viz/Google ScholarGoogle Scholar
  83. Arnaud Prouzeau, Antoine Lhuillier, Barrett Ens, Daniel Weiskopf, and Tim Dwyer. 2019. Visual Link Routing in Immersive Visualisations. In Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces. ACM, Daejeon Republic of Korea, 241–253. https://doi.org/10.1145/3343055.3359709Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Patrick Reipschlager, Tamara Flemisch, and Raimund Dachselt. 2020. Personal Augmented Reality for Information Visualization on Large Interactive Displays. IEEE Transactions on Visualization and Computer Graphics 27, 2(2020), 1182–1192. https://doi.org/10.1109/TVCG.2020.3030460Google ScholarGoogle ScholarCross RefCross Ref
  85. Hannah Ritchie, Esteban Ortiz-Ospina, Diana Beltekian, Edouard Mathieu, Joe Hasell, Bobbie Macdonald, Charlie Giattino, Cameron Appel, Lucas Rodés-Guirao, and Max Roser. 2020. Our World in Data – Coronavirus Pandemic (COVID-19). https://ourworldindata.org/coronavirusGoogle ScholarGoogle Scholar
  86. KADEK ANANTA SATRIADI. 2021. Towards immersive geovisualisation: Investigating representation, workspace, and user interaction for multiscale visual exploration of geospatial data. Ph.D. Dissertation. Monash University.Google ScholarGoogle Scholar
  87. Kadek Ananta Satriadi, Barrett Ens, Maxime Cordeil, Tobias Czauderna, and Bernhard Jenny. 2020. Maps Around Me: 3D Multiview Layouts in Immersive Spaces. Proc. ACM Hum.-Comput. Interact. 4, ISS, Article 201 (Nov. 2020), 20 pages. https://doi.org/10.1145/3427329Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Kadek Ananta Satriadi, Barrett Ens, Maxime Cordeil, Bernhard Jenny, Tobias Czauderna, and Wesley Willett. 2019. Augmented Reality Map Navigation with Freehand Gestures. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Osaka, Japan, 593–603. https://doi.org/10.1109/VR.2019.8798340Google ScholarGoogle ScholarCross RefCross Ref
  89. Kadek Ananta Satriadi, Barrett Ens, Tobias Czauderna, Maxime Cordeil, and Bernhard Jenny. 2021. Quantitative Data Visualisation on Virtual Globes. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM, Yokohama, Japan, 1–14. https://doi.org/10.1145/3411764.3445152Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Ronell Sicat, Jiabao Li, JunYoung Choi, Maxime Cordeil, Won-Ki Jeong, Benjamin Bach, and Hanspeter Pfister. 2018. DXR: A Toolkit for Building Immersive Data Visualizations. IEEE Transactions on Visualization and Computer Graphics 25, 1(2018), 715–725. https://doi.org/10.1109/TVCG.2018.2865152Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Jim Smiley, Benjamin Lee, Siddhant Tandon, Maxime Cordeil, Lonni Besançon, Jarrod Knibbe, Bernhard Jenny, and Tim Dwyer. 2021. The MADE-Axis: A Modular Actuated Device to Embody the Axis of a Data Dimension. Proceedings of the ACM on Human-Computer Interaction 5, ISS(2021), 1–23.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. John Parr Snyder. 1987. Map projections–A working manual. Vol. 1395. US Government Printing Office, USA. https://doi.org/10.3133/pp1395Google ScholarGoogle ScholarCross RefCross Ref
  93. John P Snyder. 1997. Flattening the earth: two thousand years of map projections. University of Chicago Press, USA.Google ScholarGoogle Scholar
  94. Nikita Soni, Sayli Bapat, Schuyler Gleaves, Alice Darrow, Carrie Schuman, Hannah Neff, Peter Chang, Kathryn A Stofer, and Lisa Anthony. 2019. Towards Understanding Interactions with Multi-Touch Spherical Displays. In Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, Honlulu, Hawaii, USA, 1–6. https://doi.org/10.1145/3290607.3313063Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Nikita Soni, Schuyler Gleaves, Hannah Neff, Sarah Morrison-Smith, Shaghayegh Esmaeili, Ian Mayne, Sayli Bapat, Carrie Schuman, Kathryn A Stofer, and Lisa Anthony. 2020. Adults’ and Children’s Mental Models for Gestural Interactions with Interactive Spherical Displays. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Yokohama, Japan, 1–12. https://doi.org/10.1145/3313831.3376468Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Seung Youb Ssin, James A Walsh, Ross T Smith, Andrew Cunningham, and Bruce H Thomas. 2019. Geogate: Correlating geo-temporal datasets using an augmented reality space-time cube and tangible interactions. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, Osaka, Japan, 210–219. https://doi.org/10.1109/VR.2019.8797812Google ScholarGoogle ScholarCross RefCross Ref
  97. Edward Luther Stevenson. 1921. Terrestrial and celestial globes: Their history and construction, including a consideration of their value as aids in the study of geography and astronomy. https://www.gutenberg.org/files/39866/39866-h/39866-h.htmGoogle ScholarGoogle Scholar
  98. Daan Strebe. 2002. The design of globe gores. Cartographic Perspectives Spring, 42 (2002), 46–54. https://doi.org/10.14714/CP42.555Google ScholarGoogle ScholarCross RefCross Ref
  99. Ryan Theriot, James Hutchison, Nurit Kirshenbaum, and Jason Leigh. 2020. Tailoring Data Visualization to Diversely Informed End Users. In Practice and Experience in Advanced Research Computing. ACM, Portland, USA, 304–310. https://doi.org/10.1145/3311790.3396630Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Brygg Ullmer and Hiroshi Ishii. 2000. Emerging frameworks for tangible user interfaces. IBM Systems Journal 39, 3-4 (2000), 915–931. https://doi.org/10.1147/sj.393.0915Google ScholarGoogle ScholarDigital LibraryDigital Library
  101. Brygg Ullmer, Hiroshi Ishii, and Robert JK Jacob. 2003. Tangible Query Interfaces: Physically Constrained Tokens for Manipulating Database Queries. In Human-Computer Interaction INTERACT ’03, Vol. 3. IOS Press, Zurich, Switzerland, 279–286.Google ScholarGoogle Scholar
  102. USGS Earthquake Hazards Program. 2021. Earthquake. https://earthquake.usgs.gov/Google ScholarGoogle Scholar
  103. Karla Vega, Eric Wernert, Patrick Beard, C Gniady, David Reagan, M Boyles, and Chris Eller. 2014. Visualization on spherical displays: challenges and opportunities. In Proceedings of the IEEE VIS Arts Program (VISAP). IEEE, Paris, France, 108–116.Google ScholarGoogle Scholar
  104. Xiyao Wang, Lonni Besançon, David Rousseau, Mickael Sereno, Mehdi Ammi, and Tobias Isenberg. 2020. Towards an understanding of augmented reality extensions for existing 3D data analysis tools. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu, Hawaii, USA, 1–13. https://doi.org/10.1145/3313831.3376657Google ScholarGoogle ScholarDigital LibraryDigital Library
  105. Wikipedia contributors. 2021. Globe. https://en.wikipedia.org/wiki/GlobeGoogle ScholarGoogle Scholar
  106. Julie R Williamson, Daniel Sundén, and Jay Bradley. 2015. GlobalFestival: evaluating real world interaction on a spherical display. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, Osaka, Japan, 1251–1261. https://doi.org/10.1145/2750858.2807518Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. World Bank. 2021. Global Bilateral Migration. https://databank.worldbank.org/source/global-bilateral-migrationGoogle ScholarGoogle Scholar
  108. Jun Yamashita, Hideaki Kuzuoka, Chiaki Fujimon, and Michitaka Hirose. 2007. Tangible avatar and tangible earth: a novel interface for astronomy education. In CHI’07 extended abstracts on Human Factors in Computing Systems. ACM, California, USA, 2777–2782. https://doi.org/10.1145/1240866.1241078Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. Yalong Yang, Tim Dwyer, Bernhard Jenny, Kim Marriott, Maxime Cordeil, and Haohui Chen. 2018. Origin-destination flow maps in immersive environments. IEEE Transactions on Visualization and Computer Graphics 25, 1(2018), 693–703. https://doi.org/10.1109/TVCG.2018.2865192Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. Yalong Yang, Bernhard Jenny, Tim Dwyer, Kim Marriott, Haohui Chen, and Maxime Cordeil. 2018. Maps and globes in virtual reality. Computer Graphics Forum 37, 3 (2018), 427–438. https://doi.org/10.1111/cgf.13431Google ScholarGoogle ScholarCross RefCross Ref
  111. Ben Yip, Shea Goyette, and Chris Madden. 2005. Visualising Internet traffic data with three-dimensional spherical display. In Proceedings of the 2005 Asia-Pacific Symposium on Information Visualisation. Australian Computer Society, Sydney, Australia, 153–158.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. YoungZone Culture Shanghai Co Ltd. 2021. AR Globe. http://www.neobear.com/en/product/ar_globeGoogle ScholarGoogle Scholar
  113. Feng Zhou, Henry Been-Lirn Duh, and Mark Billinghurst. 2008. Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In 2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality. IEEE, Cambridge, UK, 193–202. https://doi.org/10.1109/ISMAR.2008.4637362Google ScholarGoogle ScholarDigital LibraryDigital Library
  114. Fengyuan Zhu and Tovi Grossman. 2020. Bishare: Exploring bidirectional interactions between smartphones and head-mounted augmented reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM, Honolulu, Hawaii, USA, 1–14. https://doi.org/10.1145/3313831.3376233Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Tangible Globes for Data Visualisation in Augmented Reality

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '22: Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
      April 2022
      10459 pages
      ISBN:9781450391573
      DOI:10.1145/3491102

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 April 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate6,199of26,314submissions,24%

      Upcoming Conference

      CHI '24
      CHI Conference on Human Factors in Computing Systems
      May 11 - 16, 2024
      Honolulu , HI , USA

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format