skip to main content
research-article

Verifying the Safety of Autonomous Systems with Neural Network Controllers

Published:07 December 2020Publication History
Skip Abstract Section

Abstract

This article addresses the problem of verifying the safety of autonomous systems with neural network (NN) controllers. We focus on NNs with sigmoid/tanh activations and use the fact that the sigmoid/tanh is the solution to a quadratic differential equation. This allows us to convert the NN into an equivalent hybrid system and cast the problem as a hybrid system verification problem, which can be solved by existing tools. Furthermore, we improve the scalability of the proposed method by approximating the sigmoid with a Taylor series with worst-case error bounds. Finally, we provide an evaluation over four benchmarks, including comparisons with alternative approaches based on mixed integer linear programming as well as on star sets.

References

  1. [n.d.]. F1/10 Autonomous Racing Competition. Retrieved from http://f1tenth.org.Google ScholarGoogle Scholar
  2. M. Althoff. 2015. An introduction to CORA 2015. In Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems. 120--151.Google ScholarGoogle Scholar
  3. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. 1995. The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 1 (1995), 3--34.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, and J. Zhao. 2016. End to end learning for self-driving cars. ArXiv:1604.07316. Retrieved from https://arxiv.org/abs/1604.07316.Google ScholarGoogle Scholar
  5. Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. 2012. Taylor model flowpipe construction for non-linear hybrid systems. In Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium (RTSS’12). IEEE, 183--192.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An analyzer for non-linear hybrid systems. In Proceedings of the International Conference on Computer Aided Verification. Springer, 258--263.Google ScholarGoogle Scholar
  7. M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. 2017. Parseval networks: Improving robustness to adversarial examples. In Proceedings of the 34th International Conference on Machine Learning, Vol. 70. 854--863.Google ScholarGoogle Scholar
  8. Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12 (August 2011), 2493--2537.Google ScholarGoogle Scholar
  9. T. Dreossi, A. Donzé, and S. A. Seshia. 2017. Compositional falsification of cyber-physical systems with machine learning components. In Proceedings of the NASA Formal Methods Symposium. Springer, 357--372.Google ScholarGoogle Scholar
  10. P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok. 2015. C2E2: A verification tool for stateflow models. In Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 68--82.Google ScholarGoogle Scholar
  11. S. Dutta, X. Chen, and S. Sankaranarayanan. 2019. Reachability analysis for neural feedback systems using regressive polynomial rule inference. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control. ACM, 157--168.Google ScholarGoogle Scholar
  12. S. Dutta, S. Jha, S. Sankaranarayanan, and A. Tiwari. 2018. Output range analysis for deep feedforward neural networks. In Proceedings of the NASA Formal Methods Symposium. Springer, 121--138.Google ScholarGoogle Scholar
  13. R. Ehlers. 2017. Formal verification of piece-wise linear feed-forward neural networks. In Proceedings of the International Symposium on Automated Technology for Verification and Analysis. Springer, 269--286.Google ScholarGoogle ScholarCross RefCross Ref
  14. K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song. 2018. Robust physical-world attacks on deep learning visual classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1625--1634.Google ScholarGoogle Scholar
  15. Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George J. Pappas. 2019. Efficient and accurate estimation of lipschitz constants for deep neural networks. ArXiv:1906.04893. Retrieved from https://arxiv.org/abs/1906.04893.Google ScholarGoogle Scholar
  16. G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler. 2011. SpaceEx: Scalable verification of hybrid systems. In Proceedings of the International Conference on Computer Aided Verification. 379--395.Google ScholarGoogle Scholar
  17. Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing function approximation error in actor-critic methods. ArXiv:1802.09477. Retrieved from https://arxiv.org/abs/1802.09477.Google ScholarGoogle Scholar
  18. T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev. 2018. AI2: Safety and robustness certification of neural networks with abstract interpretation. In Proceedings of the IEEE Symposium on Security and Privacy (SP’18).Google ScholarGoogle Scholar
  19. Matthias Hein and Maksym Andriushchenko. 2017. Formal guarantees on the robustness of a classifier against adversarial manipulation. In Advances in Neural Information Processing Systems. 2266--2276.Google ScholarGoogle Scholar
  20. Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. 2019. ReachNN: Reachability analysis of neural-network controlled systems. ACM Trans. Embedd. Comput. Syst. 18, 5s (2019), 1--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. 2020. Case study: Verifying the safety of an autonomous racing car with a neural network controller. In Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control. ACM, 1--7.Google ScholarGoogle Scholar
  22. R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee. 2019. Verisig: Verifying safety properties of hybrid systems with neural network controllers. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control. ACM, 169--178.Google ScholarGoogle Scholar
  23. K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer. 2016. Policy compression for aircraft collision avoidance systems. In Proceedings of the 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC’16). IEEE, 1--10.Google ScholarGoogle Scholar
  24. G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer. 2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In Proceedings of the International Conference on Computer Aided Verification. Springer, 97--117.Google ScholarGoogle Scholar
  25. S. Kong, S. Gao, W. Chen, and E. Clarke. 2015. dReach: -reachability analysis for hybrid systems. In Proceedings of the International Conference on TOOLS and Algorithms for the Construction and Analysis of Systems. Springer, 200--205.Google ScholarGoogle Scholar
  26. A. Kurakin, I. Goodfellow, and S. Bengio. 2016. Adversarial examples in the physical world. ArXiv:1607.02533. Retrieved from https://arxiv.org/abs/1607.02533.Google ScholarGoogle Scholar
  27. G. Lafferriere, G. J. Pappas, and S. Yovine. 1999. A new class of decidable hybrid systems. In Proceedings of the International Workshop on Hybrid Systems: Computation and Control. 137--151.Google ScholarGoogle Scholar
  28. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. 2015. Continuous control with deep reinforcement learning. ArXiv:1509.02971. Retrieved from https://arxiv.org/abs/1509.02971.Google ScholarGoogle Scholar
  29. D. M. Lopez, P. Musau, H. Tran, S. Dutta, T. J. Carpenter, R. Ivanov, and T. T. Johnson. 2019. ARCH-COMP19 category report: Artificial intelligence/neural network control systems (AINNCS) for continuous and hybrid systems plants. EPiC Ser. Comput. 61 (2019), 103--119.Google ScholarGoogle ScholarCross RefCross Ref
  30. Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep learning models resistant to adversarial attacks. ArXiv:1706.06083. Retrieved from https://arxiv.org/abs/1706.06083.Google ScholarGoogle Scholar
  31. Kyoko Makino and Martin Berz. 2007. Suppression of the wrapping effect by Taylor model-based verified integrators: The single step. Int. J. Pure Appl. Math. 36, 2 (2007), 175.Google ScholarGoogle Scholar
  32. Ali A. Minai and Ronald D. Williams. 1993. On the derivatives of the sigmoid. Neural Netw. 6, 6 (1993), 845--853.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable abstract interpretation for provably robust neural networks. In Proceedings of the International Conference on Machine Learning. 3575--3583.Google ScholarGoogle Scholar
  34. Andrew William Moore. 1990. Efficient Memory-based Learning for Robot Control. Ph.D. Dissertation. University of Cambridge.Google ScholarGoogle Scholar
  35. OpenAI. [n.d.]. OpenAI Gym. Retrieved from https://gym.openai.com.Google ScholarGoogle Scholar
  36. Gurobi Optimization. [n.d.]. Gurobi Optimizer. Retrieved from https://gurobi.com.Google ScholarGoogle Scholar
  37. Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning systems. In Proceedings of the 26th Symposium on Operating Systems Principles. ACM, 1--18.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle. 2017. The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles?. In Proceedings of the Intelligent Vehicles Symposium. IEEE, 812--818.Google ScholarGoogle Scholar
  39. Rajesh Rajamani. 2011. Vehicle Dynamics and Control. Springer Science 8 Business Media.Google ScholarGoogle Scholar
  40. Prajit Ramachandran, Barret Zoph, and Quoc V. Le. 2017. Searching for activation functions. ArXiv:1710.05941 (2017). Retrieved from https://arxiv.org/pdf/1710.05941.Google ScholarGoogle Scholar
  41. V. R. Royo, D. Fridovich-Keil, S. Herbert, and C. J. Tomlin. 2018. Classification-based approximate reachability with guarantees applied to safe trajectory tracking. ArXiv:1803.03237. Retrieved from https://arxiv.org/abs/1803.03237.Google ScholarGoogle Scholar
  42. X. Sun, H. Khedr, and Y. Shoukry. 2019. Formal verification of neural network controlled autonomous systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control. ACM, 147--156.Google ScholarGoogle Scholar
  43. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, et al. 2013. Intriguing properties of neural networks. ArXiv:1312.6199. Retrieved from https://arxiv.org/abs/1312.6199.Google ScholarGoogle Scholar
  44. Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. 2014. Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1701--1708.Google ScholarGoogle Scholar
  45. A. Tarski. 1998. A decision method for elementary algebra and geometry. In Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, 24--84.Google ScholarGoogle Scholar
  46. H. Tran, S. Bak, W. Xiang, and T. T. Johnson. 2020. Verification of deep convolutional neural networks using ImageStars. In Proceedings of the 32nd International Conference on Computer-Aided Verification (CAV’20). Springer.Google ScholarGoogle Scholar
  47. H. Tran, F. Cai, D. M. Lopez, P. Musau, T. T. Johnson, and X. Koutsoukos. 2019. Safety verification of cyber-physical systems with reinforcement learning control. ACM Trans. Embedd. Comput. Syst. 18, 5s (2019), 105.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski. 2018. Simulation-based adversarial test generation for autonomous vehicles with machine learning components. ArXiv:1804.06760. Retrieved from https://arxiv.org/abs/1804.06760.Google ScholarGoogle Scholar
  49. S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. 2018. Efficient formal safety analysis of neural networks. In Advances in Neural Information Processing Systems. 6367--6377.Google ScholarGoogle Scholar
  50. T. Weng, H. Zhang, H. Chen, Z. Song, C. Hsieh, L. Daniel, D. Boning, and I. Dhillon. 2018. Towards fast computation of certified robustness for ReLU networks. In Proceedings of the International Conference on Machine Learning. 5273--5282.Google ScholarGoogle Scholar
  51. A. J. Wilkie. 1997. Schanuel’s conjecture and the decidability of the real exponential field. In Algebraic Model Theory. Springer, 223--230.Google ScholarGoogle Scholar
  52. W. Xiang, P. Musau, A. A. Wild, D. M. Lopez, N. Hamilton, X. Yang, J. Rosenfeld, and T. T Johnson. 2018. Verification for machine learning, autonomy, and neural networks survey. ArXiv:1810.01989. Retrieved from https://arxiv.org/abs/1810.01989.Google ScholarGoogle Scholar
  53. W. Xiang, H. D. Tran, and T. T. Johnson. 2017. Output reachable set estimation and verification for multi-layer neural networks. ArXiv:1708.03322. Retrieved from https://arxiv.org/abs/1708.03322.Google ScholarGoogle Scholar

Index Terms

  1. Verifying the Safety of Autonomous Systems with Neural Network Controllers

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Embedded Computing Systems
          ACM Transactions on Embedded Computing Systems  Volume 20, Issue 1
          January 2021
          193 pages
          ISSN:1539-9087
          EISSN:1558-3465
          DOI:10.1145/3441649
          • Editor:
          • Tulika Mitra
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 December 2020
          • Accepted: 1 August 2020
          • Revised: 1 July 2020
          • Received: 1 February 2020
          Published in tecs Volume 20, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format .

        View HTML Format