skip to main content
research-article

Bijective projection in a shell

Published:27 November 2020Publication History
Skip Abstract Section

Abstract

We introduce an algorithm to convert a self-intersection free, orientable, and manifold triangle mesh T into a generalized prismatic shell equipped with a bijective projection operator to map T to a class of discrete surfaces contained within the shell whose normals satisfy a simple local condition. Properties can be robustly and efficiently transferred between these surfaces using the prismatic layer as a common parametrization domain.

The combination of the prismatic shell construction and corresponding projection operator is a robust building block readily usable in many downstream applications, including the solution of PDEs, displacement maps synthesis, Boolean operations, tetrahedral meshing, geometric textures, and nested cages.

Skip Supplemental Material Section

Supplemental Material

3414685.3417769.mp4

mp4

163.7 MB

References

  1. Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Spherical Orbifold Tutte Embeddings. ACM Trans. Graph. 36, 4, Article Article 90 (July 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte Embeddings. ACM Trans. Graph. 34, 6, Article Article 190 (Oct. 2015), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Noam Aigerman and Yaron Lipman. 2016. Hyperbolic Orbifold Tutte Embeddings. ACM Trans. Graph. 35, 6, Article Article 217 (Nov. 2016), 14 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Noam Aigerman, Roi Poranne, and Yaron Lipman. 2014. Lifted Bijections for Low Distortion Surface Mappings. ACM Trans. Graph. 33, 4, Article Article 69 (July 2014), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless Surface Mappings. ACM Trans. Graph. 34, 4, Article Article 72 (July 2015), 13 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Pierre Alliez, Eric Colin De Verdire, Olivier Devillers, and Martin Isenburg. 2003. Isotropic surface remeshing. In 2003 Shape Modeling International. IEEE, 49--58.Google ScholarGoogle Scholar
  7. R Aubry, S Dey, EL Mestreau, and BK Karamete. 2017. Boundary layer mesh generation on arbitrary geometries. Internat. J. Numer. Methods Engrg. 112, 2 (2017), 157--173.Google ScholarGoogle ScholarCross RefCross Ref
  8. Romain Aubry and Rainald Löhner. 2008. On the 'most normal' normal. Communications in Numerical Methods in Engineering 24, 12 (2008), 1641--1652.Google ScholarGoogle ScholarCross RefCross Ref
  9. R Aubry, EL Mestreau, S Dey, BK Karamete, and D Gayman. 2015. On the 'most normal' normal---Part 2. Finite Elements in Analysis and Design 97 (2015), 54--63.Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chandrajit L Bajaj, Guoliang Xu, Robert J Holt, and Arun N Netravali. 2002. Hierarchical multiresolution reconstruction of shell surfaces. Computer Aided Geometric Design 19, 2 (2002), 89--112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Randolph E Bank, Andrew H Sherman, and Alan Weiser. 1983. Some refinement algorithms and data structures for regular local mesh refinement. Scientific Computing, Applications of Mathematics and Computing to the Physical Sciences 1 (1983), 3--17.Google ScholarGoogle Scholar
  12. Robert E. Barnhill, Karsten Opitz, and Helmut Pottmann. 1992. Fat surfaces: a trivariate approach to triangle-based interpolation on surfaces. Computer Aided Geometric Design 9, 5 (1992), 365--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini, and Denis Zorin. 2013. Quad-mesh generation and processing: A survey. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 51--76.Google ScholarGoogle Scholar
  14. Mario Botsch and Leif Kobbelt. 2003. Multiresolution surface representation based on displacement volumes. In Computer Graphics Forum, Vol. 22. Wiley Online Library, 483--491.Google ScholarGoogle Scholar
  15. Mario Botsch, Mark Pauly, Markus H Gross, and Leif Kobbelt. 2006. PriMo: coupled prisms for intuitive surface modeling. In Symposium on Geometry Processing. 11--20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Tamy Boubekeur and Marc Alexa. 2008. Phong tessellation. In ACM Transactions on Graphics (TOG), Vol. 27. ACM, 141.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Stéphane Calderon and Tamy Boubekeur. 2017. Bounding Proxies for Shape Approximation. ACM Trans. Graph. 36, 4, Article Article 57 (July 2017), 13 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Marcel Campen, Cláudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial Foliations. ACM Trans. Graph. 35, 4, Article 74 (July 2016), 15 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Frédéric Chazal and David Cohen-Steiner. 2005. A condition for isotopic approximation. Graphical Models 67, 5 (2005), 390--404.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Frédéric Chazal, André Lieutier, Jarek Rossignac, and Brian Whited. 2010. Ball-map: Homeomorphism between compatible surfaces. International Journal of Computational Geometry & Applications 20, 03 (2010), 285--306.Google ScholarGoogle ScholarCross RefCross Ref
  21. Yanyun Chen, Xin Tong, Jiaping Wang, Jiaping Wang, Stephen Lin, Baining Guo, Heung-Yeung Shum, and Heung-Yeung Shum. 2004. Shell texture functions. In ACM Transactions on Graphics (TOG), Vol. 23. ACM, 343--353.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Xiao-Xiang Cheng, Xiao-Ming Fu, Chi Zhang, and Shuangming Chai. 2019. Practical error-bounded remeshing by adaptive refinement. Computers & Graphics 82 (2019), 163 -- 173. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi. 2020. NASOQ: Numerically Accurate Sparsity-Oriented QP Solver. ACM Transactions on Graphics 39, 4 (July 2020).Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Philippe G Ciarlet. 1991. Basic error estimates for elliptic problems. Finite Element Methods (Part 1) (1991).Google ScholarGoogle Scholar
  25. Jonathan Cohen, Dinesh Manocha, and Marc Olano. 1997. Simplifying polygonal models using successive mappings. In Proceedings. Visualization'97 (Cat. No. 97CB36155). IEEE, 395--402.Google ScholarGoogle ScholarCross RefCross Ref
  26. Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj Agarwal, Frederick Brooks, and William Wright. 1996. Simplification envelopes. In Siggraph, Vol. 96. 119--128.Google ScholarGoogle Scholar
  27. Gordon Collins and Adrian Hilton. 2002. Mesh Decimation for Displacement Mapping.. In Eurographics (Short Papers).Google ScholarGoogle Scholar
  28. Blender Online Community. 2018. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.orgGoogle ScholarGoogle Scholar
  29. John H Conway, Heidi Burgiel, and Chaim Goodman-Strauss. 2016. The symmetries of things. CRC Press.Google ScholarGoogle Scholar
  30. Harold Scott Macdonald Coxeter. 1973. Regular polytopes. Courier Corporation.Google ScholarGoogle Scholar
  31. Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A new approach to computing distance based on heat flow. ACM Transactions on Graphics (TOG) 32, 5 (2013).Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tamal K Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V Nekhayev. 1999. Topology preserving edge contraction. Publ. Inst. Math.(Beograd)(NS) 66, 80 (1999), 23--45.Google ScholarGoogle Scholar
  33. Tamal K Dey and Tathagata Ray. 2010. Polygonal surface remeshing with Delaunay refinement. Engineering with computers 26, 3 (2010), 289--301.Google ScholarGoogle Scholar
  34. Julien Dompierre, Paul Labbé, Marie-Gabrielle Vallet, and Ricardo Camarero. 1999. How to Subdivide Pyramids, Prisms, and Hexahedra into Tetrahedra. IMR 99 (1999), 195.Google ScholarGoogle Scholar
  35. Marion Dunyach, David Vanderhaeghe, Loïc Barthe, and Mario Botsch. 2013. Adaptive remeshing for real-time mesh deformation.Google ScholarGoogle Scholar
  36. Ramsay Dyer, Hao Zhang, and Torsten Möller. 2007. Delaunay mesh construction. (2007).Google ScholarGoogle Scholar
  37. Hans-Christian Ebke, Marcel Campen, David Bommes, and Leif Kobbelt. 2014. Level-of-detail quad meshing. ACM Transactions on Graphics (TOG) 33, 6 (2014), 184.Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. 2019. Reversible Harmonic Maps between Discrete Surfaces. ACM Trans. Graph. 38, 2, Article Article 15 (March 2019), 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Michael Floater. 2003. One-to-one piecewise linear mappings over triangulations. Math. Comp. 72, 242 (2003), 685--696.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Michael S. Floater. 1997. Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14 (1997), 231--250.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and Survey. In In Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization. Springer Verlag, 157--186.Google ScholarGoogle Scholar
  42. Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-free Mappings by Simplex Assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov. 2016), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Rao V Garimella and Mark S Shephard. 2000. Boundary layer mesh generation for viscous flow simulations. Internat. J. Numer. Methods Engrg. 49, 1--2 (2000), 193--218.Google ScholarGoogle ScholarCross RefCross Ref
  44. Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 209--216.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Michael Garland and Paul S Heckbert. 1998. Simplifying surfaces with color and texture using quadric error metrics. In Proceedings Visualization'98 (Cat. No. 98CB36276). IEEE, 263--269.Google ScholarGoogle ScholarCross RefCross Ref
  46. Bernd Gärtner and Sven Schönherr. 2000. An efficient, exact, and generic quadratic programming solver for geometric optimization. In Proceedings of the sixteenth annual symposium on Computational geometry. 110--118.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Craig Gotsman and Vitaly Surazhsky. 2001. Guaranteed intersection-free polygon morphing. Computers & Graphics 25, 1 (2001), 67--75.Google ScholarGoogle ScholarCross RefCross Ref
  48. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.Google ScholarGoogle Scholar
  49. André Guéziec. 1996. Surface simplification inside a tolerance volume. IBM TJ Watson Research Center.Google ScholarGoogle Scholar
  50. Philippe Guigue and Olivier Devillers. 2003. Fast and robust triangle-triangle overlap test using orientation predicates. Journal of graphics tools 8, 1 (2003), 25--32.Google ScholarGoogle ScholarCross RefCross Ref
  51. George W Hart. 2018. Conway notation for polyhedra. URL: http://www.gergehart.co/virtual-polyhedra/conway_notation.html (2018).Google ScholarGoogle Scholar
  52. J Hass and M Trnkova. 2020. Approximating isosurfaces by guaranteed-quality triangular meshes. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 29--40.Google ScholarGoogle Scholar
  53. Kai Hormann and Günther Greiner. 2000. MIPS: An efficient global parametrization method. Technical Report. ERLANGEN-NUERNBERG UNIV (GERMANY) COMPUTER GRAPHICS GROUP.Google ScholarGoogle Scholar
  54. Kai Hormann, Bruno Lévy, and Alla Sheffer. 2007. Mesh Parameterization: Theory and Practice. In ACM SIGGRAPH 2007 Courses (San Diego, California) (SIGGRAPH '07). ACM, New York, NY, USA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. K. Hormann and N. Sukumar (Eds.). 2017. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics. CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  56. K. Hu, D. Yan, D. Bommes, P. Alliez, and B. Benes. 2017. Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement. IEEE Transactions on Visualization and Computer Graphics 23, 12 (Dec 2017), 2560--2573. Google ScholarGoogle ScholarCross RefCross Ref
  57. Kaimo Hu, Dong-Ming Yan, David Bommes, Pierre Alliez, and Bedrich Benes. 2016. Error-bounded and feature preserving surface remeshing with minimal angle improvement. IEEE transactions on visualization and computer graphics 23, 12 (2016), 2560--2573.Google ScholarGoogle Scholar
  58. Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2019a. TriWild: robust triangulation with curve constraints. ACM Transactions on Graphics (TOG) 38, 4 (2019), 52.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2019b. Fast Tetrahedral Meshing in the Wild. arXiv preprint arXiv:1908.03581 (2019).Google ScholarGoogle Scholar
  60. Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Jin Huang, Xinguo Liu, Haiyang Jiang, Qing Wang, and Hujun Bao. 2007. Gradient-based shell generation and deformation. Computer Animation and Virtual Worlds 18, 4--5 (2007), 301--309.Google ScholarGoogle ScholarCross RefCross Ref
  62. Alec Jacobson, Daniele Panozzo, C Schüller, O Diamanti, Q Zhou, N Pietroni, et al. 2016. libigl: A simple C++ geometry processing library, 2016.Google ScholarGoogle Scholar
  63. Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex augmentation framework for bijective maps. ACM Transactions on Graphics 36, 6 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Xiangmin Jiao and Michael T Heath. 2004. Overlaying surface meshes, part I: Algorithms. International Journal of Computational Geometry & Applications 14, 06 (2004), 379--402.Google ScholarGoogle ScholarCross RefCross Ref
  65. M. Jin, J. Kim, F. Luo, and X. Gu. 2008. Discrete Surface Ricci Flow. IEEE Transactions on Visualization and Computer Graphics 14, 5 (Sep. 2008), 1030--1043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Yao Jin, Dan Song, Tongtong Wang, Jin Huang, Ying Song, and Lili He. 2019. A shell space constrained approach for curve design on surface meshes. Computer-Aided Design 113 (2019), 24--34.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Liliya Kharevych, Boris Springborn, and Peter Schröder. 2006. Discrete Conformal Mappings via Circle Patterns. ACM Trans. Graph. 25, 2 (April 2006), 412--438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Peter Knabner and Gerhard Summ. 2001. The invertibility of the isoparametric mapping for pyramidal and prismatic finite elements. Numer. Math. 88, 4 (2001), 661--681.Google ScholarGoogle ScholarCross RefCross Ref
  69. Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Siggraph, Vol. 98. 105--114.Google ScholarGoogle Scholar
  70. Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  71. Vladislav Kraevoy and Alla Sheffer. 2004. Cross-parameterization and compatible remeshing of 3D models. ACM Transactions on Graphics (TOG) 23, 3 (2004), 861--869.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Aaron Lee, Henry Moreton, and Hugues Hoppe. 2000. Displaced subdivision surfaces. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques. 85--94.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Aaron WF Lee, Wim Sweldens, Peter Schröder, Lawrence C Cowsar, and David P Dobkin. 1998. MAPS: Multiresolution adaptive parameterization of surfaces. In Siggraph, Vol. 98. 95--104.Google ScholarGoogle Scholar
  74. Jerome Lengyel, Emil Praun, Adam Finkelstein, and Hugues Hoppe. 2001. Real-time fur over arbitrary surfaces. In Proceedings of the 2001 symposium on Interactive 3D graphics. ACM, 227--232.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Bruno Lévy. 2015. Geogram.Google ScholarGoogle Scholar
  76. Minchen Li, Danny M Kaufman, Vladimir G Kim, Justin Solomon, and Alla Sheffer. 2018. OptCuts: joint optimization of surface cuts and parameterization. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Yaron Lipman. 2014. Bijective mappings of meshes with boundary and the degree in mesh processing. SIAM Journal on Imaging Sciences 7, 2 (2014), 1263--1283.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Nathan Litke, Marc Droske, Martin Rumpf, and Peter Schröder. 2005. An image processing approach to surface matching.. In Symposium on Geometry Processing, Vol. 255.Google ScholarGoogle Scholar
  79. Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam I Gingold. 2017. Seamless: seam erasure and seam-aware decoupling of shape from mesh resolution. ACM Trans. Graph. 36, 6 (2017).Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Yong-Jin Liu, Chun-Xu Xu, Dian Fan, and Ying He. 2015. Efficient construction and simplification of Delaunay meshes. ACM Transactions on Graphics (TOG) 34, 6 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. Sébastien Loriot, Mael Rouxel-Labbé, Jane Tournois, and Ilker O. Yaz. 2020. Polygon Mesh Processing. In CGAL User and Reference Manual (5.0.3 ed.). CGAL Editorial Board. https://doc.cgal.org/5.0.3/Manual/packages.html#PkgPolygonMeshProcessingGoogle ScholarGoogle Scholar
  82. Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic approximation within a tolerance volume. ACM Transactions on Graphics (TOG) 34, 4 (2015), 64.Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G Kim, and Yaron Lipman. 2017. Convolutional neural networks on surfaces via seamless toric covers. ACM Trans. Graph. 36, 4 (2017), 71--1.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The discrete geodesic problem. SIAM J. Comput. 16, 4 (1987), 647--668.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4 (July 2015), 9.Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Hubert Nguyen. 2007. Gpu gems 3. Addison-Wesley Professional.Google ScholarGoogle Scholar
  87. Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional Maps: A Flexible Representation of Maps between Shapes. ACM Trans. Graph. 31, 4, Article Article 30 (July 2012), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal, and Alex Bronstein. 2017. Computing and Processing Correspondences with Functional Maps. In ACM SIGGRAPH 2017 Courses (SIGGRAPH '17). Article Article 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Daniele Panozzo, Ilya Baran, Olga Diamanti, and Olga Sorkine-Hornung. 2013. Weighted averages on surfaces. ACM Transactions on Graphics (TOG) 32, 4 (2013), 60.Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Jianbo Peng, Daniel Kristjansson, and Denis Zorin. 2004. Interactive modeling of topologically complex geometric detail. In ACM Transactions on Graphics (TOG), Vol. 23. ACM, 635--643.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Bui Tuong Phong. 1975. Illumination for computer generated pictures. Commun. ACM 18, 6 (1975), 311--317.Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Nico Pietroni, Marco Tarini, and Paolo Cignoni. 2010. Almost Isometric Mesh Parameterization through Abstract Domains. IEEE Transactions on Visualization and Computer Graphics 16, 4 (July 2010), 621--635. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Serban D Porumbescu, Brian Budge, Louis Feng, and Kenneth I Joy. 2005. Shell maps. In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 626--633.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. Emil Praun, Wim Sweldens, and Peter Schröder. 2001. Consistent mesh parameterizations. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques. 179--184.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017. Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (2017), 16 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Transactions on Graphics (TOG) 34, 6 (2015), 170.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. Patrick Schmidt, Janis Born, Marcel Campen, and Leif Kobbelt. 2019. Distortion-minimizing injective maps between surfaces. ACM Transactions on Graphics (TOG) 38 (2019).Google ScholarGoogle Scholar
  98. John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-Surface Mapping. ACM Trans. Graph. 23, 3 (Aug. 2004), 870--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013. Locally Injective Mappings. In Symposium on Geometry Processing. 125--135.Google ScholarGoogle Scholar
  100. Nicholas Sharp and Keenan Crane. 2020. A Laplacian for Nonmanifold Triangle Meshes. Computer Graphics Forum (SGP) 39, 5 (2020).Google ScholarGoogle Scholar
  101. Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. Navigating intrinsic triangulations. ACM Transactions on Graphics (TOG) 38, 4 (2019), 55.Google ScholarGoogle ScholarDigital LibraryDigital Library
  102. Alla Sheffer, Emil Praun, and Kenneth Rose. 2006. Mesh Parameterization Methods and Their Applications. Found. Trends. Comput. Graph. Vis. 2, 2 (2006), 105--171.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. Jonathan Richard Shewchuk. 1997. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete & Computational Geometry 18, 3 (1997).Google ScholarGoogle Scholar
  104. Meged Shoham, Amir Vaxman, and Mirela Ben-Chen. 2019. Hierarchical Functional Maps between Subdivision Surfaces. Computer Graphics Forum 38, 5 (2019), 55--73. Google ScholarGoogle ScholarCross RefCross Ref
  105. Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries. ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. Boris Springborn, Peter Schröder, and Ulrich Pinkall. 2008. Conformal Equivalence of Triangle Meshes. ACM Trans. Graph. 27, 3 (Aug. 2008), 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2017. OSQP: An Operator Splitting Solver for Quadratic Programs. ArXiv e-prints (Nov. 2017). arXiv:math.OC/1711.08013Google ScholarGoogle Scholar
  108. Kenneth Stephenson. 2005. Introduction to circle packing: The theory of discrete analytic functions. Cambridge University Press.Google ScholarGoogle Scholar
  109. Vitaly Surazhsky and Craig Gotsman. 2001. Morphing stick figures using optimized compatible triangulations. In Computer Graphics and Applications, 2001. Proceedings. Ninth Pacific Conference on. IEEE, 40--49.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. The CGAL Project. 2020. CGAL User and Reference Manual (5.0.3 ed.). CGAL Editorial Board. https://doc.cgal.org/5.0.3/Manual/packages.htmlGoogle ScholarGoogle Scholar
  111. Jean-Marc Thiery, Julien Tierny, and Tamy Boubekeur. 2012. CageR: Cage-Based Reverse Engineering of Animated 3D Shapes. Comput. Graph. Forum 31, 8 (Dec. 2012), 2303--2316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. W. T. Tutte. 1963. How to draw a Graph. Proceedings of the London Mathematical Society 13, 3 (1963), 743--768.Google ScholarGoogle ScholarCross RefCross Ref
  113. Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung Shum. 2003. View-dependent displacement mapping. In ACM Transactions on graphics (TOG), Vol. 22. ACM, 334--339.Google ScholarGoogle Scholar
  114. Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung Shum. 2004. Generalized displacement maps. In Proceedings of the Fifteenth Eurographics conference on Rendering Techniques. Eurographics Association, 227--233.Google ScholarGoogle Scholar
  115. Ofir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary Fixed Boundaries. ACM Trans. Graph. 33, 4, Article 75 (July 2014), 12 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  117. Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrangements for solid geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1--15.Google ScholarGoogle ScholarDigital LibraryDigital Library
  118. Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing models. arXiv preprint arXiv:1605.04797 (2016).Google ScholarGoogle Scholar
  119. Afra Zomorodian and Herbert Edelsbrunner. 2000. Fast software for box intersections. In Proceedings of the sixteenth annual symposium on Computational geometry. 129--138.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Bijective projection in a shell

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 39, Issue 6
      December 2020
      1605 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3414685
      Issue’s Table of Contents

      Copyright © 2020 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 27 November 2020
      Published in tog Volume 39, Issue 6

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader