skip to main content
research-article

IMUTube: Automatic Extraction of Virtual on-body Accelerometry from Video for Human Activity Recognition

Authors Info & Claims
Published:04 September 2020Publication History
Skip Abstract Section

Abstract

The lack of large-scale, labeled data sets impedes progress in developing robust and generalized predictive models for on-body sensor-based human activity recognition (HAR). Labeled data in human activity recognition is scarce and hard to come by, as sensor data collection is expensive, and the annotation is time-consuming and error-prone. To address this problem, we introduce IMUTube, an automated processing pipeline that integrates existing computer vision and signal processing techniques to convert videos of human activity into virtual streams of IMU data. These virtual IMU streams represent accelerometry at a wide variety of locations on the human body. We show how the virtually-generated IMU data improves the performance of a variety of models on known HAR datasets. Our initial results are very promising, but the greater promise of this work lies in a collective approach by the computer vision, signal processing, and activity recognition communities to extend this work in ways that we outline. This should lead to on-body, sensor-based HAR becoming yet another success story in large-dataset breakthroughs in recognition.

References

  1. S. Alireza Golestaneh and L. Karam. 2017. Spatially-varying blur detection based on multiscale fused and sorted transform coefficients of gradient magnitudes. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 5800--5809.Google ScholarGoogle Scholar
  2. T. Alldieck, M. Magnor, B. Bhatnagar, C. Theobalt, and G. Pons-Moll. 2019. Learning to reconstruct people in clothing from a single RGB camera. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1175--1186.Google ScholarGoogle Scholar
  3. M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2014. 2D Human Pose Estimation: New Benchmark and State of the Art Analysis. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  4. P. Asare, R. Dickerson, X. Wu, J. Lach, and J. Stankovic. 2013. BodySim: A Multi-Domain Modeling and Simulation Framework for Body Sensor Networks Research and Design. In International Conference on Body Area Networks (BODYNETS). ICST.Google ScholarGoogle Scholar
  5. M. Bächlin, M. Plotnik, and G. Tröster. 2010. Wearable assistant for Parkinson's disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 14, 2 (2010), 436--446.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. P.J. Besl and N. McKay. 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 2 (February 1992), 239--256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft. 2016. Simple online and realtime tracking. In IEEE International Conference on Image Processing (ICIP). 3464--3468.Google ScholarGoogle Scholar
  8. O. Bogdan, V. Eckstein, F. Rameau, and J. Bazin. 2018. DeepCalib: a deep learning approach for automatic intrinsic calibration of wide field-of-view cameras. In Proceedings of the ACM SIGGRAPH European Conference on Visual Media Production. ACM, 6:1-6:10.Google ScholarGoogle Scholar
  9. F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles. 2015. Activitynet: A large-scale video benchmark for human activity understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 961--970.Google ScholarGoogle Scholar
  10. Z. Cao, T. Simon, S. Wei, and Y. Sheikh. 2017. Realtime multi-person 2d pose estimation using part affinity fields. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 7291--7299.Google ScholarGoogle Scholar
  11. B. Caprile and V. Torre. 1990. Using vanishing points for camera calibration. International Journal of Computer Vision 4, 2 (March 1990), 127--139.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. J. Carreira, E. Noland, C. Hillier, and A. Zisserman. 2019. A short note on the kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987 (2019).Google ScholarGoogle Scholar
  13. Y. Chang, A. Mathur, A. Isopoussu, J. Song, and F. Kawsar. 2020. A Systematic Study of Unsupervised Domain Adaptation for Robust Human-Activity Recognition. 4, 1, Article 39 (March 2020), 30 pages.Google ScholarGoogle Scholar
  14. R. Chavarriaga, H. Sagha, and D. Roggen. 2013. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letter 34, 15 (2013), 2033--2042.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson. 2013. One billion word benchmark for measuring progress in statistical language modeling. arXiv preprint arXiv:1312.3005 (2013).Google ScholarGoogle Scholar
  16. Blender Online Community. 2018. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.orgGoogle ScholarGoogle Scholar
  17. W. Conover and R. Iman. 1981. Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician 35, 3 (1981), 124--129.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. 2009. Imagenet: A large-scale hierarchical image database. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 248--255.Google ScholarGoogle Scholar
  19. J. Devlin, M. Chang, K. Lee, and K. Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 1 (2019), 4171--4186.Google ScholarGoogle Scholar
  20. H. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. Muller. 2018. Data augmentation using synthetic data for time series classification with deep residual networks. arXiv preprint arXiv:1808.02455 (2018).Google ScholarGoogle Scholar
  21. S. Feng and M. Duarte. 2019. Few-shot learning-based human activity recognition. Expert Systems with Applications 138 (2019), 112782.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Fernández, S. Garcia, F. Herrera, and N. Chawla. 2018. SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. Journal of artificial intelligence research 61 (2018), 863--905.Google ScholarGoogle ScholarCross RefCross Ref
  23. R. Girshick. 2015. Fast r-cnn. In IEEE International Conference on Computer Vision (ICCV). 1440--1448.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative adversarial nets. 2672--2680.Google ScholarGoogle Scholar
  25. A. Gordon, H. Li, R. Jonschkowski, and A. Angelova. 2019. Depth From Videos in the Wild: Unsupervised Monocular Depth Learning From Unknown Cameras. In IEEE International Conference on Computer Vision (ICCV). IEEE.Google ScholarGoogle Scholar
  26. C. Gu, C. Sun, D. Ross, C. Vondrick, C. Pantofaru, Y. Li, S. Vijayanarasimhan, G. Toderici, S. Ricco, R. Sukthankar, C. Schmid, and J. Malik. 2018. Ava: A video dataset of spatio-temporally localized atomic visual actions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6047--6056.Google ScholarGoogle Scholar
  27. Y. Guan and T. Plötz. 2017. Ensembles of deep lstm learners for activity recognition using wearables. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies (IMWUT) 1, 2 (2017), 1--28.Google ScholarGoogle Scholar
  28. N. Hammerla, R. Kirkham, P. Andras, and T. Ploetz. 2013. On preserving statistical characteristics of accelerometry data using their empirical cumulative distribution. In Proceedings of the ACM International Symposium on Wearable Computers. 65--68.Google ScholarGoogle Scholar
  29. N. Y. Hammerla, S. Halloran, and T. Plötz. 2016. Deep, convolutional, and recurrent models for human activity recognition using wearables.. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). AAAI Press, 1533--1540.Google ScholarGoogle Scholar
  30. S. Haradal, H. Hayashi, and S. Uchida. 2018. Biosignal data augmentation based on generative adversarial networks. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 368--371.Google ScholarGoogle Scholar
  31. H. Haresamudram, D. Anderson, and T. Plötz. 2019. On the role of features in human activity recognition. In Proceedings of the ACM International Symposium on Wearable Computers. 78--88.Google ScholarGoogle Scholar
  32. K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770--778.Google ScholarGoogle Scholar
  33. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in neural information processing systems. 6626--6637.Google ScholarGoogle Scholar
  34. G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury. 2012. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal processing magazine 29, 6 (2012), 82--97.Google ScholarGoogle Scholar
  35. K. Hovsepian, M. Al'Absi, E. Ertin, T. Kamarck, M. Nakajima, and S. Kumar. 2015. cStress: towards a gold standard for continuous stress assessment in the mobile environment. In Proceedings of the ACM international joint conference on pervasive and ubiquitous computing. 493--504.Google ScholarGoogle Scholar
  36. Y. Huang, M. Kaufmann, E. Aksan, M. Black, O. Hilliges, and G. Pons-Moll. 2018. Deep inertial poser: learning to reconstruct human pose from sparse inertial measurements in real time. 37, 6 (2018), 1--15.Google ScholarGoogle Scholar
  37. S. Ioffe and C. Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).Google ScholarGoogle Scholar
  38. I. Joel, A.and Stergios. 2011. A Direct Least-Squares (DLS) method for PnP. In IEEE International Conference on Computer Vision (ICCV). IEEE.Google ScholarGoogle Scholar
  39. A. Kanazawa, M. Black, D. Jacobs, and J. Malik. 2018. End-to-end recovery of human shape and pose. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 7122--7131.Google ScholarGoogle Scholar
  40. C. Kang, H. Jung, and Y. Lee. 2019. Towards Machine Learning with Zero Real-World Data. In The ACM Workshop on Wearable Systems and Applications. 41--46.Google ScholarGoogle Scholar
  41. S. Kang, H. Choi, H. Park, B. Choi, H. Im, D. Shin, Y. Jung, J. Lee, H. Park, S. Park, and J. Roh. 2017. The development of an IMU integrated clothes for postural monitoring using conductive yarn and interconnecting technology. Sensors 17, 11 (2017), 2560.Google ScholarGoogle ScholarCross RefCross Ref
  42. P. Karlsson, B. Lo, and G. Z. Yang. 2014. Inertial sensing simulations using modified motion capture data. In Proceedings of the International Conference on Wearable and Implantable Body Sensor Networks (BSN). 16--19.Google ScholarGoogle Scholar
  43. D. Kingma and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).Google ScholarGoogle Scholar
  44. H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. 2011. HMDB: a large video database for human motion recognition. In IEEE International Conference on Computer Vision (ICCV). IEEE, 2556--2563.Google ScholarGoogle Scholar
  45. Carnegie Mellon Graphics Lab. 2008. Carnegie Mellon Motion Capture Database. http://mocap.cs.cmu.edu/Google ScholarGoogle Scholar
  46. N. Lane, Y. Xu, H. Lu, S. Hu, T. Choudhury, A. Campbell, and F. Zhao. 2011. Enabling Large-Scale Human Activity Inference on Smartphones Using Community Similarity Networks. In Proceedings of the International Conference on Ubiquitous Computing. ACM, 355--364.Google ScholarGoogle Scholar
  47. G. Laput and C. Harrison. 2019. Sensing Fine-Grained Hand Activity with Smartwatches. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1--13.Google ScholarGoogle Scholar
  48. A. Le Guennec, S. Malinowski, and R. Tavenard. 2016. Data Augmentation for Time Series Classification using Convolutional Neural Networks. In ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data.Google ScholarGoogle Scholar
  49. W. Li, Z. Zhang, and Z. Liu. 2010. Action recognition based on a bag of 3D points. In The IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 9--14.Google ScholarGoogle Scholar
  50. D. Liaqat, M. Abdalla, Pegah Abed-Esfahani, Moshe Gabel, Tatiana Son, Robert Wu, Andrea Gershon, Frank Rudzicz, and Eyal De Lara. 2019. WearBreathing: Real World Respiratory Rate Monitoring Using Smartwatches. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies (IMWUT) 3, 2 (2019), 1--22.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. J. Liu, A. Shahroudy, M. Perez, G. Wang, L. Duan, and A. Kot. 2019. NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence (2019).Google ScholarGoogle Scholar
  52. M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. Black. 2015. SMPL: A skinned multi-person linear model. 34, 6 (2015), 1--16.Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. 2018. Are gans created equal? a large-scale study. In Advances in neural information processing systems. 700--709.Google ScholarGoogle Scholar
  54. N. Mahmood, N. Ghorbani, N. Troje, G. Pons-Moll, and M. Black. 2019. AMASS: Archive of motion capture as surface shapes. In IEEE International Conference on Computer Vision (ICCV). 5442--5451.Google ScholarGoogle Scholar
  55. A. Mathur, T. Zhang, S. Bhattacharya, P. Velickovic, L. Joffe, N. Lane, F. Kawsar, and P. Lió. 2018. Using deep data augmentation training to address software and hardware heterogeneities in wearable and smartphone sensing devices. In IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE, 200--211.Google ScholarGoogle Scholar
  56. A. Muhammad Sayem, S. Hon Teay, H. Shahariar, P. Fink, and A. Albarbar. 2020. Review on Smart Electro-Clothing Systems (SeCSs). Sensors 20, 3 (2020), 587.Google ScholarGoogle ScholarCross RefCross Ref
  57. V. Nair and G. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the international conference on machine learning (ICML). 807--814.Google ScholarGoogle Scholar
  58. A. Odena, V. Dumoulin, and C. Olah. 2016. Deconvolution and checkerboard artifacts. Distill 1, 10 (2016), e3.Google ScholarGoogle ScholarCross RefCross Ref
  59. F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy. 2013. Berkeley mhad: A comprehensive multimodal human action database. In IEEE Workshop on Applications of Computer Vision (WACV). IEEE, 53--60.Google ScholarGoogle Scholar
  60. A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. 2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016).Google ScholarGoogle Scholar
  61. F. J. Ordóñez and D. Roggen. 2016. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16, 1 (2016), 115.Google ScholarGoogle ScholarCross RefCross Ref
  62. J. Park, Q. Zhou, and V. Koltun. 2017. Colored Point Cloud Registration Revisited. In IEEE International Conference on Computer Vision (ICCV). 143--152.Google ScholarGoogle Scholar
  63. D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli. 2019. 3D human pose estimation in video with temporal convolutions and semi-supervised training. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 7753--7762.Google ScholarGoogle Scholar
  64. T. Phąm and Y. Suh. 2018. Spline Function Simulation Data Generation for Walking Motion Using Foot-Mounted Inertial Sensors. In Sensors. MDPI, 199--210.Google ScholarGoogle Scholar
  65. T. Plötz, C. Chen, N. Hammerla, and G. Abowd. 2012. Automatic synchronization of wearable sensors and video-cameras for ground truth annotation-a practical approach. In Proceedings of the ACM International Symposium on Wearable Computers. IEEE, 100--103.Google ScholarGoogle Scholar
  66. F. Pomerleau, F. Colas, and R. Siegwart. 2015. A Review of Point Cloud Registration Algorithms for Mobile Robotics. Found. Trends Robot 4, 1 (May 2015), 1--104.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. G. Pons-Moll, S. Pujades, S. Hu, and M. Black. 2017. ClothCap: Seamless 4D clothing capture and retargeting. 36, 4 (2017), 1--15.Google ScholarGoogle Scholar
  68. G. Pons-Moll, J. Romero, N. Mahmood, and M Black. 2015. Dyna: A model of dynamic human shape in motion. 34, 4 (2015), 1--14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. G. Ramponi, P. Protopapas, M. Brambilla, and R.Janssen. 2018. T-cgan: Conditional generative adversarial network for data augmentation in noisy time series with irregular sampling. arXiv preprint arXiv:1811.08295 (2018).Google ScholarGoogle Scholar
  70. K. Rashid and J. Louis. 2019. Times-series data augmentation and deep learning for construction equipment activity recognition. Advanced Engineering Informatics 42 (2019), 100944.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You only look once: Unified, real-time object detection. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 779--788.Google ScholarGoogle Scholar
  72. A. Reiss and D. Stricker. 2012. Introducing a new benchmarked dataset for activity monitoring. In Proceedings of the ACM International Symposium on Wearable Computers. IEEE, 108--109.Google ScholarGoogle Scholar
  73. A. Reiss and D. Stricker. 2013. Personalized mobile physical activity recognition. In Proceedings of the ACM International Symposium on Wearable Computers. 25--28.Google ScholarGoogle Scholar
  74. V. Rey, P. Hevesi, O. Kovalenko, and P. Lukowicz. 2019. Let there be IMU data: generating training data for wearable, motion sensor based activity recognition from monocular RGB videos. In Adjunct Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the ACM International Symposium on Wearable Computers. 699--708.Google ScholarGoogle Scholar
  75. M. Rosca, B. Lakshminarayanan, and S. Mohamed. 2018. Distribution matching in variational inference. arXiv preprint arXiv:1802.06847 (2018).Google ScholarGoogle Scholar
  76. S. Rusinkiewicz and M. Levoy. 2001. Efficient variants of the ICP algorithm. In Proceedings Third International Conference on 3-D Digital Imaging and Modeling. IEEE.Google ScholarGoogle Scholar
  77. A. Saeed, T. Ozcelebi, and J. Lukkien. 2019. Multi-task Self-Supervised Learning for Human Activity Detection. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies (IMWUT) 3, 2 (2019), 1--30.Google ScholarGoogle Scholar
  78. P. M. Scholl, M. Wille, and K. Van Laerhoven. 2015. Wearables in the wet lab: a laboratory system for capturing and guiding experiments. In Proceedings of the International Conference on Ubiquitous Computing. ACM, 589--599.Google ScholarGoogle Scholar
  79. S. Shah and J.K. Aggarwal. 1996. Intrinsic parameter calibration procedure for a (high-distortion) fish-eye lens camera with distortion model and accuracy estimation. Pattern Recognition 29, 11 (November 1996), 1775--1788.Google ScholarGoogle ScholarCross RefCross Ref
  80. Z. Shen, W. Wang, X. Lu, J. Shen, H. Ling, T. Xu, and L. Shao. 2019. Human-Aware Motion Deblurring. In IEEE International Conference on Computer Vision (ICCV). 5572--5581.Google ScholarGoogle Scholar
  81. J. Shi, L. Xu, and J. Jia. 2014. Discriminative blur detection features. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2965--2972.Google ScholarGoogle Scholar
  82. C. Shorten and T. Khoshgoftaar. 2019. A survey on image data augmentation for deep learning. Journal of Big Data 6, 1 (2019), 60.Google ScholarGoogle ScholarCross RefCross Ref
  83. G. Sigurdsson, G. Varol, X. Wang, I. Laptev, A. Farhadi, and A. Gupta. 2016. Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding. arXiv preprint arXiv:1604.01753 (2016).Google ScholarGoogle Scholar
  84. K. Soomro, A. Zamir, and M. Shah. 2012. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012).Google ScholarGoogle Scholar
  85. O. Steven Eyobu and D. Han. 2018. Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 18, 9 (2018), 2892.Google ScholarGoogle ScholarCross RefCross Ref
  86. T. Sztyler and H. Stuckenschmidt. 2016. On-body localization of wearable devices: An investigation of position-aware activity recognition. In IEEE International Conference on Pervasive Computing and Communications (PerCom). IEEE, 1--9.Google ScholarGoogle Scholar
  87. S. Takeda, T. Okita, P. Lago, and S. Inoue. 2018. A multi-sensor setting activity recognition simulation tool. In Proceedings of the ACM International Joint Conference and International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers. 1444--1448.Google ScholarGoogle Scholar
  88. E. Thomaz, I. Essa, and G. Abowd. 2015. A practical approach for recognizing eating moments with wrist-mounted inertial sensing. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing. 1029--1040.Google ScholarGoogle Scholar
  89. C. Tong, S. Tailor, and N. Lane. 2020. Are Accelerometers for Activity Recognition a Dead-End?. In Proceedings of the International Workshop on Mobile Computing Systems and Applications. ACM, 39--44.Google ScholarGoogle Scholar
  90. M. Trumble, A. Gilbert, C. Malleson, A. Hilton, and J. Collomosse. 2017. Total Capture: 3D Human Pose Estimation Fusing Video and Inertial Sensors. In British Machine Vision Conference (BMVC).Google ScholarGoogle Scholar
  91. T. Um, F. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche, U. Fietzek, and D. Kulić. 2017. Data augmentation of wearable sensor data for parkinson's disease monitoring using convolutional neural networks. In Proceedings of the ACM International Conference on Multimodal Interaction. 216--220.Google ScholarGoogle Scholar
  92. F. Xiao, L. Pei, L. Chu, D. Zou, W. Yu, Y. Zhu, and T. Li. 2020. A Deep Learning Method for Complex Human Activity Recognition Using Virtual Wearable Sensors. arXiv preprint arXiv:2003.01874 (2020).Google ScholarGoogle Scholar
  93. S. Yao, Y. Zhao, H. Shao, C. Zhang, A. Zhang, S. Hu, D. Liu, S. Liu, Lu Su, and T. Abdelzaher. 2018. Sensegan: Enabling deep learning for internet of things with a semi-supervised framework. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies (IMWUT) 2, 3 (2018), 1--21.Google ScholarGoogle Scholar
  94. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. 2014. How transferable are features in deep neural networks?. In Advances in neural information processing systems. 3320--3328.Google ScholarGoogle Scholar
  95. A. Young, M. Ling, and D. Arvind. 2011. IMUSim: A simulation environment for inertial sensing algorithm design and evaluation. In Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN). IEEE, 199--210.Google ScholarGoogle Scholar
  96. J. Yu and R. Ramamoorthi. 2019. Robust Video Stabilization by Optimization in CNN Weight Space. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3800--3808.Google ScholarGoogle Scholar
  97. M. Zhang and A. A. Sawchuk. 2012. USC-HAD: a daily activity dataset for ubiquitous activity recognition using wearable sensors. In Proceedings of the International Conference on Ubiquitous Computing.Google ScholarGoogle Scholar
  98. Q. Zhang and R. Pless. 2004. Extrinsic calibration of a camera and laser range finder (improves camera calibration). In IEEE International Conference on Intelligent Robots and Systems (IROS). IEEE.Google ScholarGoogle Scholar
  99. Z. Zhao, Y. Chen, J. Liu, Z. Shen, and M. Liu. 2011. Cross-people mobile-phone based activity recognition. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).Google ScholarGoogle Scholar
  100. T. Zhou, M. Brown, Noah S., and D. Lowe. 2017. Unsupervised learning of depth and ego-motion from video. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1851--1858.Google ScholarGoogle Scholar
  101. H. Zhuang. 1995. A self-calibration approach to extrinsic parameter estimation of stereo cameras. Robotics and Autonomous Systems 15, 3 (August 1995), 189--197.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. IMUTube: Automatic Extraction of Virtual on-body Accelerometry from Video for Human Activity Recognition

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
          Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 4, Issue 3
          September 2020
          1061 pages
          EISSN:2474-9567
          DOI:10.1145/3422862
          Issue’s Table of Contents

          Copyright © 2020 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 4 September 2020
          Published in imwut Volume 4, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader