skip to main content
10.1145/3411764.3445576acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article
Open Access

ARTEMIS: A Collaborative Mixed-Reality System for Immersive Surgical Telementoring

Authors Info & Claims
Published:07 May 2021Publication History

ABSTRACT

Traumatic injuries require timely intervention, but medical expertise is not always available at the patient’s location. Despite recent advances in telecommunications, surgeons still have limited tools to remotely help inexperienced surgeons. Mixed Reality hints at a future where remote collaborators work side-by-side as if co-located; however, we still do not know how current technology can improve remote surgical collaboration. Through role-playing and iterative-prototyping, we identify collaboration practices used by expert surgeons to aid novice surgeons as well as technical requirements to facilitate these practices. We then introduce ARTEMIS, an AR-VR collaboration system that supports these key practices. Through an observational study with two expert surgeons and five novice surgeons operating on cadavers, we find that ARTEMIS supports remote surgical mentoring of novices through synchronous point, draw, and look affordances and asynchronous video clips. Most participants found that ARTEMIS facilitates collaboration despite existing technology limitations explored in this paper.

References

  1. Deepak Akkil, Jobin Mathew James, Poika Isokoski, and Jari Kangas. 2016. GazeTorch: Enabling gaze awareness in collaborative physical tasks. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. 1151–1158.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Judith Amores, Xavier Benavides, and Pattie Maes. 2015. Showme: A remote collaboration system that supports immersive gestural communication. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems. 1343–1348.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Daniel Andersen, Voicu Popescu, Maria Eugenia Cabrera, Aditya Shanghavi, Gerardo Gomez, Sherri Marley, Brian Mullis, and Juan Wachs. 2016. Virtual annotations of the surgical field through an augmented reality transparent display. The Visual Computer 32, 11 (2016), 1481–1498.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Daniel Andersen, Voicu Popescu, Maria Eugenia Cabrera, Aditya Shanghavi, Gerardo Gomez, Sherri Marley, Brian Mullis, and Juan P Wachs. 2016. Medical telementoring using an augmented reality transparent display. Surgery 159, 6 (2016), 1646–1653.Google ScholarGoogle ScholarCross RefCross Ref
  5. Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman, Karan Singh, and George W Fitzmaurice. 2017. Experimental Evaluation of Sketching on Surfaces in VR.. In CHI, Vol. 17. 5643–5654.Google ScholarGoogle Scholar
  6. Mark Billinghurst and Hirokazu Kato. 2002. Collaborative augmented reality. Commun. ACM 45, 7 (2002), 64–70.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Etai M Bogen, Knut M Augestad, Hiten RH Patel, and Rolv-Ole Lindsetmo. 2014. Telementoring in education of laparoscopic surgeons: An emerging technology. World journal of gastrointestinal endoscopy 6, 5 (2014), 148.Google ScholarGoogle Scholar
  8. Andrius Budrionis, Knut Magne Augestad, Hiten RH Patel, and Johan Gustav Bellika. 2013. An evaluation framework for defining the contributions of telestration in surgical telementoring. Interactive journal of medical research 2, 2 (2013), e14.Google ScholarGoogle Scholar
  9. Frank K Butler. 2010. Tactical combat casualty care: update 2009. Journal of Trauma and Acute Care Surgery 69, 1 (2010), S10–S13.Google ScholarGoogle ScholarCross RefCross Ref
  10. Frank K Butler Jr, John Hagmann, and E George Butler. 1996. Tactical combat casualty care in special operations. Military medicine 161, suppl_1 (1996), 3–16.Google ScholarGoogle Scholar
  11. Henry Chen, Austin S Lee, Mark Swift, and John C Tang. 2015. 3D collaboration method over HoloLens™ and Skype™ end points. In Proceedings of the 3rd International Workshop on Immersive Media Experiences. 27–30.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Long Chen, Thomas W Day, Wen Tang, and Nigel W John. 2017. Recent Developments and Future Challenges in Medical Mixed Reality. In 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 123–135.Google ScholarGoogle Scholar
  13. Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch, Sven Köhler, Patrick Schmidt, Robert Kovacs, Johannes Jasper, Jonas Kemper, and Patrick Baudisch. 2015. TurkDeck: Physical Virtual Reality Based on People. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. 417–426.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Sebastiano Chiodini, Marco Pertile, Riccardo Giubilato, Federico Salvioli, Marco Barrera, Paola Franceschetti, and Stefano Debei. 2018. Camera rig extrinsic calibration using a motion capture system. In 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 590–595.Google ScholarGoogle ScholarCross RefCross Ref
  15. Charles R Doarn and Rifat Latifi. 2016. Telementoring and teleproctoring in trauma and emergency care. Current Trauma Reports 2, 3 (2016), 138–143.Google ScholarGoogle ScholarCross RefCross Ref
  16. Barrett Ens, Joel Lanir, Anthony Tang, Scott Bateman, Gun Lee, Thammathip Piumsomboon, and Mark Billinghurst. 2019. Revisiting collaboration through mixed reality: The evolution of groupware. International Journal of Human-Computer Studies 131 (2019), 81–98.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Yuanyuan Feng, Christopher Wong, Adrian Park, and Helena Mentis. 2016. Taxonomy of instructions given to residents in laparoscopic cholecystectomy. Surgical endoscopy 30, 3 (2016), 1073–1077.Google ScholarGoogle Scholar
  18. Susan R Fussell, Leslie D Setlock, Jie Yang, Jiazhi Ou, Elizabeth Mauer, and Adam DI Kramer. 2004. Gestures over video streams to support remote collaboration on physical tasks. Human-Computer Interaction 19, 3 (2004), 273–309.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Danilo Gasques, Janet Johnson, Thomas Sharkey, and Nadir Weibel. 2019. What You Sketch Is What You Get: Quick and Easy Augmented Reality Prototyping with PintAR. In Proc. CHI 2019(CHI EA ’19).Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Steffen Gauglitz, Benjamin Nuernberger, Matthew Turk, and Tobias Höllerer. 2014. World-stabilized annotations and virtual scene navigation for remote collaboration. In Proceedings of the 27th annual ACM symposium on User interface software and technology. 449–459.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Darren Gergle, Robert E Kraut, and Susan R Fussell. 2004. Action as language in a shared visual space. In Proceedings of the 2004 ACM conference on Computer supported cooperative work. 487–496.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. HTC. 2020. VIVE Pro Starter Kit | The professional-grade VR headset. https://www.vive.com/us/product/vive-pro-starter-kit/Google ScholarGoogle Scholar
  23. Weidong Huang, Seungwon Kim, Mark Billinghurst, and Leila Alem. 2019. Sharing hand gesture and sketch cues in remote collaboration. Journal of Visual Communication and Image Representation 58 (2019), 428–438.Google ScholarGoogle ScholarCross RefCross Ref
  24. Intel. 2020. Intel RealSense Depth Camera D435. https://www.intelrealsense.com/Google ScholarGoogle Scholar
  25. Janet G Johnson, Danilo Gasques Rodrigues, Madhuri Gubbala, and Nadir Weibel. 2018. Holocpr: Designing and evaluating a mixed reality interface for time-critical emergencies. In Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies for Healthcare. 67–76.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Rohana Abdul Karim, Nor Farizan Zakaria, Mohd Asyraf Zulkifley, Mohd Marzuki Mustafa, Ismail Sagap, and Nani Harlina Md Latar. 2013. Telepointer technology in telemedicine: a review. Biomedical engineering online 12, 1 (2013), 21.Google ScholarGoogle Scholar
  27. Seungwon Kim, Gun Lee, Mark Billinghurst, and Weidong Huang. 2020. The combination of visual communication cues in mixed reality remote collaboration. Journal on Multimodal User Interfaces 14, 4 (2020), 321–335.Google ScholarGoogle ScholarCross RefCross Ref
  28. Robert E Kraut, Darren Gergle, and Susan R Fussell. 2002. The use of visual information in shared visual spaces: Informing the development of virtual co-presence. In Proceedings of the 2002 ACM conference on Computer supported cooperative work. 31–40.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Bernard C. Kress and William J. Cummings. 2017. Invited Paper: Towards the Ultimate Mixed Reality Experience: HoloLens Display Architecture Choices. SID Symposium Digest of Technical Papers 48, 1 (2017), 127–131.Google ScholarGoogle Scholar
  30. Gun A. Lee, Theophilus Teo, Seungwon Kim, and Mark Billinghurst. 2018. A User Study on MR Remote Collaboration Using Live 360 Video. In 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 153–164.Google ScholarGoogle ScholarCross RefCross Ref
  31. Chengyuan Lin, Daniel Andersen, Voicu Popescu, Edgar Rojas-Munoz, Maria Eugenia Cabrera, Brian Mullis, Ben Zarzaur, Kathryn Anderson, Sherri Marley, and Juan Wachs. 2018. A first-person mentee second-person mentor AR interface for surgical telementoring. In 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, 3–8.Google ScholarGoogle ScholarCross RefCross Ref
  32. Stephan Lukosch, Mark Billinghurst, Leila Alem, and Kiyoshi Kiyokawa. 2015. Collaboration in augmented reality. Computer Supported Cooperative Work (CSCW) 24, 6 (2015), 515–525.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. JA Martin, Glenn Regehr, Richard Reznick, Helen Macrae, John Murnaghan, Carol Hutchison, and M Brown. 1997. Objective structured assessment of technical skill (OSATS) for surgical residents. British journal of surgery 84, 2 (1997), 273–278.Google ScholarGoogle Scholar
  34. Microsoft. 2020. Azure Kinect - Fast Point Cloud. https://github.com/microsoft/Azure-Kinect-Sensor-SDK/tree/develop/examples/fastpointcloudGoogle ScholarGoogle Scholar
  35. Microsoft. 2020. Azure Kinect DK hardware specifications. https://docs.microsoft.com/en-us/azure/kinect-dk/hardware-specificationGoogle ScholarGoogle Scholar
  36. Microsoft. 2020. HoloLens (1st gen) hardware. https://docs.microsoft.com/en-us/hololens/hololens1-hardwareGoogle ScholarGoogle Scholar
  37. Microsoft. 2020. MixedReality-WebRTC. https://github.com/microsoft/MixedReality-WebRTCGoogle ScholarGoogle Scholar
  38. Microsoft. 2020. Overview of Dynamics 365 Remote Assist on HoloLens and HoloLens 2. https://docs.microsoft.com/en-us/dynamics365/mixed-reality/remote-assist/overview-hololensGoogle ScholarGoogle Scholar
  39. Paul Milgram, Haruo Takemura, Akira Utsumi, and Fumio Kishino. 1995. Augmented reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and telepresence technologies, Vol. 2351. International Society for Optics and Photonics, 282–292.Google ScholarGoogle Scholar
  40. Bonnie A Nardi, Heinrich Schwarz, Allan Kuchinsky, Robert Leichner, Steve Whittaker, and Robert Sclabassi. 1993. Turning away from talking heads: The use of video-as-data in neurosurgery. In Proceedings of the INTERACT’93 and CHI’93 Conference on Human Factors in Computing Systems. 327–334.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ohan Oda, Carmine Elvezio, Mengu Sukan, Steven Feiner, and Barbara Tversky. 2015. Virtual replicas for remote assistance in virtual and augmented reality. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology. 405–415.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. OptiTrack. 2020. Motive - Optical motion capture software. https://optitrack.com/products/motive/Google ScholarGoogle Scholar
  43. OptiTrack. 2020. OptiTrack - Active Components. https://optitrack.com/products/active-components/Google ScholarGoogle Scholar
  44. OptiTrack. 2020. OptiTrack - Hardware. https://optitrack.com/hardware/Google ScholarGoogle Scholar
  45. Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh Khamis, Mingsong Dou, 2016. Holoportation: Virtual 3d teleportation in real-time. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. 741–754.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh Kowdle, Yury Degtyarev, David Kim, Philip L. Davidson, Sameh Khamis, Mingsong Dou, Vladimir Tankovich, Charles Loop, Qin Cai, Philip A. Chou, Sarah Mennicken, Julien Valentin, Vivek Pradeep, Shenlong Wang, Sing Bing Kang, Pushmeet Kohli, Yuliya Lutchyn, Cem Keskin, and Shahram Izadi. 2016. Holoportation: Virtual 3D Teleportation in Real-time. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. 741–754.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Antti Oulasvirta, Esko Kurvinen, and Tomi Kankainen. 2003. Understanding contexts by being there: case studies in bodystorming. Personal and ubiquitous computing 7, 2 (2003), 125–134.Google ScholarGoogle Scholar
  48. Nitish Padmanaban, Robert Konrad, Tal Stramer, Emily A Cooper, and Gordon Wetzstein. 2017. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. Proceedings of the National Academy of Sciences 114, 9 (2017), 2183–2188.Google ScholarGoogle ScholarCross RefCross Ref
  49. Thammathip Piumsomboon, Arindam Day, Barrett Ens, Youngho Lee, Gun Lee, and Mark Billinghurst. 2017. Exploring enhancements for remote mixed reality collaboration. In SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications. 1–5.Google ScholarGoogle Scholar
  50. Thammathip Piumsomboon, Gun A Lee, Jonathon D Hart, Barrett Ens, Robert W Lindeman, Bruce H Thomas, and Mark Billinghurst. 2018. Mini-me: An adaptive avatar for mixed reality remote collaboration. In Proceedings of the 2018 CHI conference on human factors in computing systems. 1–13.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Edgar Rojas-Muñoz, Maria E Cabrera, Chengyuan Lin, Daniel Andersen, Voicu Popescu, Kathryn Anderson, Ben L Zarzaur, Brian Mullis, and Juan P Wachs. 2020. The System for Telementoring with Augmented Reality (STAR): A head-mounted display to improve surgical coaching and confidence in remote areas. Surgery (2020).Google ScholarGoogle Scholar
  52. Edgar Rojas-Muñoz, Maria Eugenia Cabrera, Chengyuan Lin, Natalia Sánchez-Tamayo, Dan Andersen, Voicu Popescu, Kathryn Anderson, Ben Zarzaur, Brian Mullis, and Juan P Wachs. 2020. Telementoring in Leg Fasciotomies via Mixed-Reality: Clinical Evaluation of the STAR Platform. Military Medicine 185, Supplement_1 (2020), 513–520.Google ScholarGoogle ScholarCross RefCross Ref
  53. Azin Semsar, Hannah McGowan, Yuanyuan Feng, H Reza Zahiri, Adrian Park, Andrea Kleinsmith, and Helena Mentis. 2019. How Trainees Use the Information from Telepointers in Remote Instruction. Proceedings of the ACM on Human-Computer Interaction 3, CSCW(2019), 1–20.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Dave Snowdon, Elizabeth F Churchill, and Alan J Munro. 2001. Collaborative virtual environments: Digital spaces and places for CSCW: An introduction. In Collaborative virtual environments. Springer, 3–17.Google ScholarGoogle Scholar
  55. Maurício Sousa, Rafael Kufner dos Anjos, Daniel Mendes, Mark Billinghurst, and Joaquim Jorge. 2019. WARPING DEIXIS: Distorting Gestures to Enhance Collaboration. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Dag Svanaes and Gry Seland. 2004. Putting the users center stage: role playing and low-fi prototyping enable end users to design mobile systems. In Proceedings of the SIGCHI conference on Human factors in computing systems. 479–486.Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Theophilus Teo, Louise Lawrence, Gun A Lee, Mark Billinghurst, and Matt Adcock. 2019. Mixed Reality Remote Collaboration Combining 360 Video and 3D Reconstruction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1–14.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Balasaravanan Thoravi Kumaravel, Fraser Anderson, George Fitzmaurice, Bjoern Hartmann, and Tovi Grossman. 2019. Loki: Facilitating Remote Instruction of Physical Tasks Using Bi-Directional Mixed-Reality Telepresence. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology. 161–174.Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Ultraleap. 2020. Tracking | Ultraleap. https://www.ultraleap.com/tracking/Google ScholarGoogle Scholar
  60. Unity. 2020. Unity Real-Time Development Platform | 3D, 2D VR & AR Visualizations. https://unity.com/Google ScholarGoogle Scholar
  61. Reid Vassallo, Adam Rankin, Elvis CS Chen, and Terry M Peters. 2017. Hologram stability evaluation for Microsoft HoloLens. In Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, Vol. 10136. International Society for Optics and Photonics, 1013614.Google ScholarGoogle Scholar
  62. Senso VR. 2020. Senso VR | Interactive virtual and augmented reality. https://senso.me/Google ScholarGoogle Scholar
  63. Vuforia. 2020. Vuforia Developer Portal. https://www.vuforia.comGoogle ScholarGoogle Scholar

Index Terms

  1. ARTEMIS: A Collaborative Mixed-Reality System for Immersive Surgical Telementoring
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
            May 2021
            10862 pages
            ISBN:9781450380966
            DOI:10.1145/3411764

            Copyright © 2021 Owner/Author

            This work is licensed under a Creative Commons Attribution International 4.0 License.

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 7 May 2021

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed limited

            Acceptance Rates

            Overall Acceptance Rate6,199of26,314submissions,24%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          HTML Format

          View this article in HTML Format .

          View HTML Format