skip to main content
10.1145/3357236.3395468acmconferencesArticle/Chapter ViewAbstractPublication PagesdisConference Proceedingsconference-collections
research-article

Context-Based Interface Prototyping and Evaluation for (Shared) Autonomous Vehicles Using a Lightweight Immersive Video-Based Simulator

Published:03 July 2020Publication History

ABSTRACT

Autonomous vehicles (AVs; SAE levels 4 and 5) develop rapidly, whereas appropriate methods for interface design and development for such driverless vehicles are still in their infancy. This paper presents a simple approach for context-based prototyping and evaluation of human-machine interfaces for (shared) AVs in public transportation. It demonstrates how to set up a lightweight immersive video-based AV simulator using real-world video and audio footage captured in urban traffic. In two user studies (n1 = 9; n2 = 31) we investigate presence perception and simulator sickness to provide initial evidence for the suitability of this cost-effective method. Furthermore, with the intent to increase presence perception and technology acceptance, we combine the AV simulator with a human actor imitating a passenger that gets on and off a shared AV ride.

Skip Supplemental Material Section

Supplemental Material

disfp3891.mp4

mp4

38.6 MB

References

  1. Arthur Barz, Jan Conrad, and Dieter Wallach. 2020. Advantages of Using Runtime Procedural Generation of Virtual Environments Based on Real World Data for Conducting Empirical Automotive Research. In Proceedings of the 22nd International Conference on Human-Computer Interaction (HCII '20), Lecture Notes in Computer Science (LNCS), in press.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Dirk Bäumer, Walter R. Bischofberger, Horst Lichter, and Heinz Züllighoven. 1996. User Interface Prototyping -- Concepts, Tools, and Experience. In Proceedings of the 18th International Conference on Software Engineering (ICSE '96), 532--541. DOI: https://doi.org/10.1109/ICSE.1996.493447Google ScholarGoogle ScholarCross RefCross Ref
  3. Klaus Bengler, Klaus Dietmayer, Berthold Färber, Markus Maurer, Christoph Stiller, and Hermann Winner. 2014. Three Decades of Driver Assistance Systems -- Review and Future Perspectives. IEEE Intelligent Transportation Systems Magazine 6, 4: 6--22. DOI: https://doi.org/10.1109/MITS.2014.2336271Google ScholarGoogle ScholarCross RefCross Ref
  4. Teresa Brell, Ralf Philipsen, and Martina Ziefle. 2019. Suspicious minds? -- users ' perceptions of autonomous and connected driving. Theoretical Issues in Ergonomoics Science 20, 3: 301--331. DOI: https://doi.org/10.1080/1463922X.2018.1485985Google ScholarGoogle ScholarCross RefCross Ref
  5. Heiner Bubb. 2015. Methoden der ergonomischen Fahrzeugentwicklung. In Automobilergonomie, Heiner Bubb, Klaus Bengler, Rainer E. Grünen and Mark Vollrath (eds.). Springer Fachmedien, Wiesbaden, 583--617. DOI: https://doi.org/10.1007/978-3-8348-2297-0_10Google ScholarGoogle ScholarCross RefCross Ref
  6. Marion Buchenau and Jane Fulton Suri. 2000. Experience Prototyping. In Proceedings of the 3rd ACM Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques (DIS '00), 424--433. DOI: https://doi.org/10.1145/347642.347802Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Zhuang Jie Chong, Baoxing Qin, Tirthankar Bandyopadhyay, Tichakorn Wongpiromsarn, Brice Rebsamen, P. Dai, E. S. Rankin, and Marcelo H. Ang. 2013. Autonomy for Mobility on Demand. In Proceedings of the 12th International Conference on Intelligent Autonomous Systems (IAS'13), 671--682. DOI: https://doi.org/10.1109/IROS.2012.6386287Google ScholarGoogle ScholarCross RefCross Ref
  8. Jacob Cohen. 1992. A Power Primer. Psychological Bulletin 112, 1: 155--159. DOI: https://doi.org/10.1037/0033-2909.112.1.155Google ScholarGoogle ScholarCross RefCross Ref
  9. Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. 1993. Surround-screen projection-based virtual reality: The design and implementation of the CAVE. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '93), 135--142. DOI: https://doi.org/10.1145/166117.166134Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Pedro M. D'Orey, Amin Hosseini, Jose Azevedo, Frank Diermeyer, Michel Ferreira, and Markus Lienkamp. 2016. Hail-a-Drone: Enabling teleoperated taxi fleets. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV '16), 774--781. DOI: https://doi.org/10.1109/IVS.2016.7535475Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. e.GO Mobile AG. 2020. e.GO Mover. e-gomobile.com. Retrieved January 14, 2020 from https://www.e-go-mobile.com/en/models/e.go-mover/Google ScholarGoogle Scholar
  12. Grace Eden. 2018. Transforming cars into computers: Interdisciplinary opportunities for HCI. In Proceedings of the 32nd International BCS Human Computer Interaction Conference (HCI '18). DOI: https://doi.org/10.14236/ewic/HCI2018.73Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gary W. Evans and Richard Wener. 2007. Crowding and personal space invasion on the train: Please don't make me sit in the middle. Journal of Environmental Psychology 27, 1: 90--94. DOI: https://doi.org/10.1016/j.jenvp.2006.10.002Google ScholarGoogle ScholarCross RefCross Ref
  14. Thomas Franke, Christiane Attig, and Daniel Wessel. 2019. A Personal Resource for Technology Interaction: Development and Validation of the Affinity for Technology Interaction (ATI) Scale. International Journal of Human-Computer Interaction 35, 6: 456--467. DOI: https://doi.org/10.1080/10447318.2018.1456150Google ScholarGoogle ScholarCross RefCross Ref
  15. Fraunhofer IAO and Horváth & Partners. 2016. The Value of Time -- Nutzerbezogene Service-Potenziale durch autonomes Fahren. Retrieved December 12, 2019 from https://blog.iao.fraunhofer.de/images/blog/studievalue_of_time.pdfGoogle ScholarGoogle Scholar
  16. Michael A. Gerber, Ronald Schroeter, and Julia Vehns. 2019. A Video-Based Automated Driving Simulator for Automotive UI prototyping, UX and Behaviour Research. In Proceedings the 11th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '19), 14--23. DOI: https://doi.org/10.1145/3342197.3344533Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. German Research Center for Artificial Intelligence (DFKI). 2019. OpenDS: Open Source Driving Simulation. openDS.dfki.de. Retrieved September 18, 2019 from https://opends.dfki.de/Google ScholarGoogle Scholar
  18. Peter J. Gianaros, Eric R. Muth, J. Toby Mordkoff, Max E. Levine, and Robert M. Stern. 2001. A Questionnaire for the Assessment of the Multiple Dimensions of Motion Sickness. Aviat Space Environ Med. 72, 2: 115--119.Google ScholarGoogle Scholar
  19. Greenwich Automated Transport Environment. 2018. GATEway Project: Final Report -- This is Just the Beginning. Retrieved January 4, 2020 from https://gateway-project.org.uk/wpcontent/uploads/2018/06/D1.3_GATEway-Project-FinalReport-brochure.pdfGoogle ScholarGoogle Scholar
  20. Catherine Harvey and Neville A. Stanton. 2013. A Usability Evaluation Framework for In-Vehicle Information Systems. In Usability Evaluation for InVehicle Systems. CRC Press, Boca Raton, 49--70. DOI: https://doi.org/10.1016/j.apergo.2010.09.013Google ScholarGoogle ScholarCross RefCross Ref
  21. Andrew J. Hawkins. 2019. Waymo's self-driving cars are now available on Lyft's app in Phoenix - The Verge. The Verge. Retrieved September 14, 2019 from https://www.theverge.com/2019/5/7/18536003/waymolyft-self-driving-ride-hail-app-phoenixGoogle ScholarGoogle Scholar
  22. Henning Hinderer, Jonas Stegmuller, Jannick Schmidt, Jessica Sommer, and Jennifer Lucke. 2018. Acceptance of Autonomous Vehicles in Suburban Public Transport. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC '18). DOI: https://doi.org/10.1109/ICE.2018.8436261Google ScholarGoogle ScholarCross RefCross Ref
  23. Philipp Hock, Johannes Kraus, Franziska Babel, Marcel Walch, Enrico Rukzio, and Martin Baumann. 2018. How to design valid simulator studies for investigating user experience in automated driving Review and hands-on considerations. In Proceedings of the 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '18), 105--117. DOI: https://doi.org/10.1145/3239060.3239066Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kanwaldeep Kaur and Giselle Rampersad. 2018. Trust in driverless cars: Investigating key factors influencing the adoption of driverless cars. Journal of Engineering and Technology Management 48: 87--96. DOI: https://doi.org/10.1016/j.jengtecman.2018.04.006Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Michael Kondzior. 2018. Akzeptanzskala -- Methode zur Erfassung der Akzeptanz eines Systems (deutsche Übersetzung). Retrieved May 25, 2018 from https://www.hfes-europe.org/accept/accept_de.htmGoogle ScholarGoogle Scholar
  26. Christian Kray, Patrick Olivier, Amy Weihong Guo, Pushpendra Singh, Hai Nam Ha, and Phil Blythe. 2007. Taming context: A key challenge in evaluating the usability of ubiquitous systems. In Ubiquitous Systems Evaluation 2007 (USE '07) - Workshop at Ubicomp 2007.Google ScholarGoogle Scholar
  27. Sven Krome, William Goddard, Stefan Greuter, Steffen P Walz, and Ansgar Gerlicher. 2015. A Context-Based Design Process for Future Use Cases of Autonomous Driving?: Prototyping AutoGym. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '15), 265--272. DOI: https://doi.org/10.1145/2799250.2799257Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Jinke D. Van der Laan, Adriaan Heino, and Dick De Waard. 1997. A simple procedure for the assessment of acceptance of advanced transport telematics. Transportation Research Part C: Emerging Technologies 5, 1: 1--10. DOI: https://doi.org/10.1016/S0968-090X(96)00025--3Google ScholarGoogle ScholarCross RefCross Ref
  29. Andrew R. Lacher, Robert Grabowski, and Stephen Cook. 2014. Autonomy, Trust, and Transportation. In Proceedings of the 2014 AAAI Spring Symposium, 42--49.Google ScholarGoogle Scholar
  30. Michael W. Levin, Kara M. Kockelman, Stephen D. Boyles, and Tianxin Li. 2017. A general framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing application.computers, Environment and Urban Systems 64: 373--383. DOI: https://doi.org/10.1016/j.compenvurbsys.2017.04.006Google ScholarGoogle ScholarCross RefCross Ref
  31. Youn Kyung Lim, Erik Stolterman, and Josh Tenenberg. 2008. The anatomy of prototypes: Prototypes as filters, prototypes as manifestations of design ideas. ACM Transactions on Computer-Human Interaction 15, 2. DOI: https://doi.org/10.1145/1375761.1375762Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sina Nordhoff, Joost de Winter, Ruth Madigan, Natasha Merat, Bart van Arem, and Riender Happee. 2018. User acceptance of automated shuttles in BerlinSchöneberg: A questionnaire study. Transportation Research Part F: Traffic Psychology and Behaviour 58, October: 843--854. DOI: https://doi.org/10.1016/j.trf.2018.06.024Google ScholarGoogle ScholarCross RefCross Ref
  33. Morin Ostkamp and Christian Kray. 2014. Supporting design, prototyping, and evaluation of public display systems. In Proceedings of the 2014 ACM SIGCHI Symposium on Engineering Interactive Computing Systems (EICS '14), 263--272. DOI: https://doi.org/10.1145/2607023.2607035Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Marco Pavone. 2016. Autonomous Mobility-onDemand Systems for Future Urban Mobility. In Autonomous Driving -- Technical, Legal and Social Aspects, Markus Mauerer, J. Christian Gerdes, Barbara Lenz and Hermann Winner (eds.). Springer Nature, Berlin, Heidelberg, 387--404. DOI: https://doi.org/10.1007/978-3-662-48847-8Google ScholarGoogle ScholarCross RefCross Ref
  35. Ralf Philipsen, Teresa Brell, and Martina Ziefle. 2018. Carriage without a Driver -- User Requirements for Intelligent Autonomous Mobility Services. In Proceedings of the International Conference on Human Factors in Transportation (AHFE '18), 339--350. DOI: https://doi.org/10.1007/978-3-319-93885-1Google ScholarGoogle ScholarCross RefCross Ref
  36. SAE International. 2018. J3016-JUN2018 -- Surface Vehicle Recommend Practice: Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles.Google ScholarGoogle Scholar
  37. Hans-Peter Schöner and Bernhard Morys. 2015. Dynamische Fahrsimulatoren. In Handbuch Fahrerassistenzsysteme (3rd ed.), H. Winner, S. Hakuli, F. Lotz and C. Singer (eds.). Springer Fachmedien, Wiesbaden, 139--155. DOI: https://doi.org/http://dx.doi.org/10.1007/978-3-65805734-3_9Google ScholarGoogle ScholarCross RefCross Ref
  38. Thomas Schubert, Frank Friedmann, and Holger Regenbrecht. 2001. The Experience of Presence: Factor Analytic Insights. Presence 10, 3: 266--281. DOI: https://doi.org/10.1162/105474601300343603Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Thomas Schubert, Frank Friedmann, and Holger Regenbrecht. 2016. Igroup Presence Questionnaire (IPQ). igroup.org. Retrieved June 23, 2019 from http://www.igroup.org/pq/ipq/index.phpGoogle ScholarGoogle Scholar
  40. Valentin Schwind, Pascal Knierim, Nico Haas, and Niels Henze. 2019. Using Presence Questionnaires in Virtual Reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. DOI: https://doi.org/10.1145/3290605.3300590Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Kevin Spieser, Kyle Treleaven, Rick Zhang, Emilio Frazzoli, Daniel Morton, and Marco Pavone. 2014. Toward a Systematic Approach to the Design and Evaluation of Automated Mobility-on-Demand Systems: A Case Study in Singapore. In Road Vehicle Automation, Gereon Meyer and Sven Beiker (eds.). Springer International Publishing, Basel, 229--245. DOI: https://doi.org/10.1007/978-3-319-05990-7_20Google ScholarGoogle ScholarCross RefCross Ref
  42. Joost C.F. de Winter, Peter M. van Leeuwen, and Riender Happee. 2012. Advantages and Disadvantages of Driving Simulators: A Discussion. In Measuring Behavior 2012, 47--50. DOI: https://doi.org/10.1016/j.beproc.2013.02.010Google ScholarGoogle ScholarCross RefCross Ref
  43. Larissa Zacherl, Jonas Radlmayr, and Klaus Bengler. 2020. Constructing a Mental Model of Automation Levels in the Area of Vehicle Guidance. In Proceedings of the 3rd International Conference on Intelligent Human Systems Integration (IHSI '20): Integrating People and Intelligent Systems, 73--79. DOI: https://doi.org/10.1007/978-3-030-39512-4_12Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Context-Based Interface Prototyping and Evaluation for (Shared) Autonomous Vehicles Using a Lightweight Immersive Video-Based Simulator

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        DIS '20: Proceedings of the 2020 ACM Designing Interactive Systems Conference
        July 2020
        2264 pages
        ISBN:9781450369749
        DOI:10.1145/3357236

        Copyright © 2020 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 3 July 2020

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate1,158of4,684submissions,25%

        Upcoming Conference

        DIS '24
        Designing Interactive Systems Conference
        July 1 - 5, 2024
        IT University of Copenhagen , Denmark

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader