skip to main content
10.1145/3328905.3329762acmconferencesArticle/Chapter ViewAbstractPublication PagesdebsConference Proceedingsconference-collections
research-article

Composite Event Recognition for Maritime Monitoring

Authors Info & Claims
Published:24 June 2019Publication History

ABSTRACT

Maritime monitoring systems support safe shipping as they allow for the real-time detection of dangerous, suspicious and illegal vessel activities. We present such a system using the Run-Time Event Calculus, a composite event recognition system with formal, declarative semantics. For effective recognition, we developed a library of maritime patterns in close collaboration with domain experts. We present a thorough evaluation of the system and the patterns both in terms of predictive accuracy and computational efficiency, using real-world datasets of vessel position streams and contextual geographical information.

References

  1. Sten Andler, Mikael Fredin, Per Gustavsson, Joeri Laere, Maria Nilsson, and Pontus Svenson. 2009. SMARTracIn--A concept for spoof resistant tracking of vessels and detection of adverse intentions.Google ScholarGoogle Scholar
  2. Alexander Artikis and Marek J. Sergot. 2010. Executable specification of open multi-agent systems. Logic Journal of the IGPL 18, 1 (2010), 31--65.Google ScholarGoogle ScholarCross RefCross Ref
  3. Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. 2015. An Event Calculus for Event Recognition. IEEE Trans. Knowl. Data Eng. 27, 4 (2015), 895--908.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Elena Camossi, Anne-Laure Jousselme, Cyril Ray, Melita Hadzagic, Richard Dreo, and Christophe Claramunt. 2017. Maritime Experiments Specification, H2020 datAcron project deliverable D5.3. (2017). http://datacron-project.eu/.Google ScholarGoogle Scholar
  5. Konstantinos Chatzikokolakis, Dimitrios Zissis, Giannis Spiliopoulos, and Konstantinos Tserpes. 2018. Mining Vessel Trajectory Data for Patterns of Search and Rescue. Zenodo.Google ScholarGoogle Scholar
  6. Keith L. Clark. 1978. Negation as Failure. In Logic and Databases, H. Gallaire and J. Minker (Eds.). Plenum Press, 293--322.Google ScholarGoogle Scholar
  7. Harm Greidanus, Marlene Alvarez, Carlos Santamaria, François-Xavier Thoorens, Naouma Kourti, and Pietro Argentieri. 2017. The SUMO Ship Detector Algorithm for Satellite Radar Images. Remote Sensing 9, 3 (2017). http://www.mdpi.com/2072-4292/9/3/246Google ScholarGoogle Scholar
  8. Bilal Idiri and Aldo Napoli. 2012. The automatic identification system of maritime accident risk using rule-based reasoning. In 2012 7th International Conference on System of Systems Engineering (SoSE). 125--130.Google ScholarGoogle ScholarCross RefCross Ref
  9. Anne-Laure Jousselme, Elena Camossi, Melita Hadzagic, Cyril Ray, Christophe Claramunt, Eric Reardon, Karna Bryan, and Michael Ilteris. 2016. A Fishing Monitoring Use Case in Support to Collaborative Research. In In Proceedings of Maritime Knowledge Discovery and Anomaly Detection Workshop. 57--61.Google ScholarGoogle Scholar
  10. Anne-Laure Jousselme, Cyril Ray, Elena Camossi, Melita Hadzagic, Christophe Claramunt, Karna Bryan, Eric Reardon, and Michael Ilteris. 2016. Maritime Use Case description, H2020 datAcron project deliverable D5.1. (2016). http://datacron-project.eu/.Google ScholarGoogle Scholar
  11. Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. 2015. Incremental learning of event definitions with Inductive Logic Programming. Machine Learning 100, 2-3 (2015), 555--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. 2016. Online learning of event definitions. TPLP 16, 5-6 (2016), 817--833.Google ScholarGoogle Scholar
  13. Robert A. Kowalski and Marek J. Sergot. 1986. A Logic-based Calculus of Events. New Generation Comput. 4, 1 (1986), 67--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. L. Le Masson and J. Barre. 2018. Complex Event Recognition support for maritime monitoring in the context of European datAcron project. Final year project. French naval academy.Google ScholarGoogle Scholar
  15. Fabrizio Natale, Maurizio Gibin, Alfredo Alessandrini, Michele Vespe, and Anton Paulrud. 2015. Mapping Fishing Effort through AIS Data. PLOS ONE 10, 6 (06 2015), 1--16.Google ScholarGoogle Scholar
  16. Kostas Patroumpas, Elias Alevizos, Alexander Artikis, Marios Vodas, Nikos Pelekis, and Yannis Theodoridis. 2017. Online event recognition from moving vessel trajectories. GeoInformatica 21, 2 (2017), 389--427. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. Pitsikalis and A. Artikis. 2019. Composite Maritime Events (Version 0.1) {Data set}. https://zenodo.org/record/2557290.Google ScholarGoogle Scholar
  18. Manolis Pitsikalis, Ioannis Kontopoulos, Alexander Artikis, Elias Alevizos, Paul Delaunay, Jules-Edouard Pouessel, Richard Dreo, Cyril Ray, Elena Camossi, Anne-Laure Jousselme, and Melita Hadzagic. 2018. Composite Event Patterns for Maritime Monitoring. In Proceedings of the 10th Hellenic Conference on Artificial Intelligence (SETN '18). ACM, New York, NY, USA, Article 29, 4 pages.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Teodor Przymusinski. 1987. On the Declarative Semantics of Stratified Deductive Databases and Logic Programs. In Foundations of Deductive Databases and Logic Programming. Morgan. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Cyril Ray, Elena Camossi, Richard Dréo, Anne-Laure Jousselme, Clément Iphar, Maximilian Zocholl, and Melita Hadzagic. 2019. Use case design and big data analytics evaluation for fishing monitoring. In OCEANS 2019.Google ScholarGoogle Scholar
  21. Cyril Ray, Elena Camossi, Anne-Laure Jousselme, Melita Hadzagic, Christophe Claramunt, and Ernie Batty. 2016. Maritime Data Preparation and Curation, H2020 datAcron project deliverable D5.2. (2016). http://datacron-project.eu/.Google ScholarGoogle Scholar
  22. Cyril Ray, Richard Dréo, Elena Camossi, and Anne-Laure Jousselme. 2018. Heterogeneous Integrated Dataset for Maritime Intelligence, Surveillance, and Reconnaissance (Version 0.1). https://zenodo.org/record/1167595.Google ScholarGoogle Scholar
  23. Maria Riveiro. 2011. Visual Analytics for Maritime Anomaly Detection. Ph.D. Dissertation. University of SkövdeUniversity of Skövde, School of Humanities and Informatics, The Informatics Research Centre.Google ScholarGoogle Scholar
  24. Jean Roy and Michael Davenport. 2010. Exploitation of maritime domain ontologies for anomaly detection and threat analysis. In 2010 International WaterSide Security Conference. 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  25. Georgios M. Santipantakis, Akrivi Vlachou, Christos Doulkeridis, Alexander Artikis, Ioannis Kontopoulos, and George A. Vouros. 2018. A Stream Reasoning System for Maritime Monitoring. In 25th International Symposium on Temporal Representation and Reasoning, TIME 2018, Warsaw, Poland, October 15-17, 2018. 20:1--20:17.Google ScholarGoogle Scholar
  26. Hamed Yaghoubi Shahir, Uwe Glasser, Amir Yaghoubi Shahir, and Hans Wehn. 2015. Maritime situation analysis framework: Vessel interaction classification and anomaly detection. In 2015 IEEE International Conference on Big Data (Big Data). 1279--1289.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lauro Snidaro, Ingrid Visentini, and Karna Bryan. 2015. Fusing Uncertain Knowledge and Evidence for Maritime Situational Awareness via Markov Logic Networks. Inf. Fusion 21 (Jan. 2015), 159--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Fernando Terroso-Saenz, Mercedes Valdes-Vela, and Antonio F. Skarmeta-Gomez. 2016. A complex event processing approach to detect abnormal behaviours in the marine environment. Information Systems Frontiers 18, 4 (01 Aug 2016), 765--780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Joeri van Laere and Maria Nilsson. 2009. Evaluation of a workshop to capture knowledge from subject matter experts in maritime surveillance. In Proceedings of FUSION. 171--178.Google ScholarGoogle Scholar
  30. Arnaud Vandecasteele and Aldo Napoli. 2012. An enhanced spatial reasoning ontology for maritime anomaly detection. In 2012 7th International Conference on System of Systems Engineering (SoSE). 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  31. Michele Vespe, Maurizio Gibin, Alfredo Alessandrini, Fabrizio Natale, Fabio Mazzarella, and Giacomo C. Osio. 2016. Mapping EU fishing activities using ship tracking data. Journal of Maps 12, sup1 (2016), 520--525.Google ScholarGoogle Scholar

Index Terms

  1. Composite Event Recognition for Maritime Monitoring

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          DEBS '19: Proceedings of the 13th ACM International Conference on Distributed and Event-based Systems
          June 2019
          291 pages
          ISBN:9781450367943
          DOI:10.1145/3328905

          Copyright © 2019 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 24 June 2019

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          DEBS '19 Paper Acceptance Rate13of47submissions,28%Overall Acceptance Rate130of553submissions,24%

          Upcoming Conference

          DEBS '24

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader