skip to main content
research-article
Open Access

Reconstructing scenes with mirror and glass surfaces

Published:30 July 2018Publication History
Skip Abstract Section

Abstract

Planar reflective surfaces such as glass and mirrors are notoriously hard to reconstruct for most current 3D scanning techniques. When treated naïvely, they introduce duplicate scene structures, effectively destroying the reconstruction altogether. Our key insight is that an easy to identify structure attached to the scanner---in our case an AprilTag---can yield reliable information about the existence and the geometry of glass and mirror surfaces in a scene. We introduce a fully automatic pipeline that allows us to reconstruct the geometry and extent of planar glass and mirror surfaces while being able to distinguish between the two. Furthermore, our system can automatically segment observations of multiple reflective surfaces in a scene based on their estimated planes and locations. In the proposed setup, minimal additional hardware is needed to create high-quality results. We demonstrate this using reconstructions of several scenes with a variety of real mirrors and glass.

Skip Supplemental Material Section

Supplemental Material

102-262.mp4

mp4

268.7 MB

a102-whelan.mp4

mp4

297.9 MB

References

  1. Sameer Agarwal, Keir Mierle, and Others. 2018. Ceres Solver, http://ceres-solver.org. (2018).Google ScholarGoogle Scholar
  2. N. Arvanitopoulos, R. Achanta, and S. Süsstrunk. 2017. Single Image Reflection Suppression. In CVPR 2017. 1752--1760.Google ScholarGoogle Scholar
  3. J. Balzer, D. Acevedo-Feliz, S. Soatto, S. Höfer, M. Hadwiger, and J. Beyerer. 2014. Cavlectometry: Towards Holistic Reconstruction of Large Mirror Objects. In 2nd International Conference on 3D Vision (3DV). 448--455. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. J. Balzer, S. Höfer, and J. Beyerer. 2011. Multiview specular stereo reconstruction of large mirror surfaces. In CVPR 2011. 2537--2544. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. L. G. Brown. 1992. A Survey of Image Registration Techniques. Computing Surveys 24, 4 (December 1992), 325--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. 2017. Matterport3D: Learning from RGB-D Data in Indoor Environments. In 5th International Conference on 3D Vision (3DV).Google ScholarGoogle ScholarCross RefCross Ref
  7. Tongbo Chen, Michael Goesele, and Hans-Peter Seidel. 2006. Mesostructure from Specularity. In CVPR 2006, Vol. 2. 1825--1832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias Nießner. 2017. ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. In Proc. Computer Vision and Pattern Recognition (CVPR), IEEE.Google ScholarGoogle ScholarCross RefCross Ref
  9. A. DelPozo and S. Savarese. 2007. Detecting Specular Surfaces on Natural Images. In CVPR 2007.Google ScholarGoogle Scholar
  10. Yuanyuan Ding and Jingyi Yu. 2008. Recovering shape characteristics on near-flat specular surfaces. In CVPR 2008.Google ScholarGoogle Scholar
  11. J. Engel, V. Koltun, and D. Cremers. 2018. Direct Sparse Odometry. PAMI 40, 3 (2018), 611--625.Google ScholarGoogle ScholarCross RefCross Ref
  12. A. Fasano, M. Callieri, P. Cignoni, and R. Scopigno. 2003. Exploiting mirrors for laser stripe 3D scanning. In 3DIM 2003. 243--250.Google ScholarGoogle Scholar
  13. Paul Foster, Zhenghong Sun, Jong Jin Park, and Benjamin Kuipers. 2013. VisAGGE: Visible angle grid for glass environments. In CVPR 2013. 2213--2220.Google ScholarGoogle ScholarCross RefCross Ref
  14. C. Godard, P. Hedman, W. Li, and G. J. Brostow. 2015. Multi-view Reconstruction of Highly Specular Surfaces in Uncontrolled Environments. In 3rd International Conference on 3D Vision (3DV). 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Ivo Ihrke, Kiriakos N. Kutulakos, Hendrik P. A. Lensch, Marcus Magnor, and Wolfgang Heidrich. 2010. Transparent and Specular Object Reconstruction. Computer Graphics Forum 29, 8 (2010), 2400--2426.Google ScholarGoogle ScholarCross RefCross Ref
  16. B. Jacquet, C. Häne, K. Köser, and M. Pollefeys. 2013. Real-World Normal Map Capture for Nearly Flat Reflective Surfaces. In CVPR 2013. 713--720. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jun Jiang, Renato Miyagusuku, Atsushi Yamashita, and Hajime Asama. 2017. Glass Confidence Maps Building Based on Neural Networks Using Laser Range-Finders for Mobile Robots. In IEEE/SICE International Symposium on System Integration.Google ScholarGoogle Scholar
  18. O. Kähler, V. Adrian Prisacariu, C. Yuheng Ren, X. Sun, P. Torr, and D. Murray. 2015. Very High Frame Rate Volumetric Integration of Depth Images on Mobile Devices. TVCG 21, 11 (Nov 2015), 1241--1250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. J. Kannala and S. S. Brandt. 2006. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. PAMI 28, 8 (Aug 2006), 1335--1340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. P.-F. Käshammer and A. Nüchter. 2015. Mirror identification and correction of 3D point clouds. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40, 5 (2015), 109.Google ScholarGoogle Scholar
  21. U Klank, D. Carton, and M. Beetz. 2011. Transparent object detection and reconstruction on a mobile platform. In ICRA 2011. 5971--5978.Google ScholarGoogle Scholar
  22. Rainer Koch, Stefan May, Patrick Murmann, and Andreas Nüchter. 2017b. Identification of Transparent and Specular Reflective Material in Laser Scans to Discriminate Affected Measurements for Faultless Robotic SLAM. Journal of Robotics and Autonomous Systems (JRAS) 87 (2017), 296--312.Google ScholarGoogle ScholarCross RefCross Ref
  23. R. Koch, S. May, and A. Nüchter. 2017a. Effective distinction of transparent and specular reflective objects in point clouds of a multi-echo laser scanner. In ICAR 2017. 566--571.Google ScholarGoogle Scholar
  24. Brian Kulis and Michael I. Jordan. 2011. Revisiting k-means: New algorithms via Bayesian nonparametrics. arXiv preprint arXiv.1111.0352 (2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. P. Lewis. 1995. Fast Normalized Cross-Correlation. In Vision Interface '95. Canadian Image Processing and Pattern Recognition Society.Google ScholarGoogle Scholar
  26. M. Liu, R. Hartley, and M. Salzmann. 2015. Mirror Surface Reconstruction from a Single Image. PAMI 37, 4 (April 2015), 760--773.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. William E. Lorensen and Harvey E. Cline. 1987. Marching cubes: A high resolution 3D surface construction algorithm. In SIGGRAPH. ACM, 163--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. D. Miyazaki, M. Kagesawa, and K. Ikeuchi. 2004. Transparent surface modeling from a pair of polarization images. PAMI 26, 1 (2004), 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. 2015. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics 31, 5 (Oct 2015), 1147--1163.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. 2011. KinectFusion: Real-time dense surface mapping and tracking. In ISMAR 2011. 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger. 2013. Real-time 3D Reconstruction at Scale Using Voxel Hashing. ACM Trans. Graph. 32, 6, Article 169 (Nov. 2013), 11 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Edwin Olson. 2011. AprilTag: A robust and flexible visual fiducial system. In ICRA 2011. 3400--3407.Google ScholarGoogle ScholarCross RefCross Ref
  33. Rui Rodrigues, João P. Barreto, and Urbano Nunes. 2010. Camera Pose Estimation Using Images of Planar Mirror Reflections. In ECCV 2010. 382--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. YiChang Shih, D. Krishnan, F. Durand, and W. T. Freeman. 2015. Reflection removal using ghosting cues. In CVPR 2015. 3193--3201.Google ScholarGoogle Scholar
  35. Sudipta N. Sinha, Johannes Kopf, Michael Goesele, Daniel Scharstein, and Richard Szeliski. 2012. Image-based Rendering for Scenes with Reflections. ACM Trans. Graph. 31, 4, Article 100 (July 2012), 10 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Julian Straub, Trevor Campbell, Jonathan P How, and John W Fisher. 2015. Small-variance nonparametric clustering on the hypersphere. In CVPR 2015. 334--342.Google ScholarGoogle ScholarCross RefCross Ref
  37. Marco Tarini, Hendrik P.A. Lensch, Michael Goesele, and Hans-Peter Seidel. 2005. 3D acquisition of mirroring objects using striped patterns. Graphical Models 67, 4 (2005), 233 -- 259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Markus Unger, Thomas Pock, and Horst Bischof. 2008a. Interactive globally optimal image segmentation. Technical Report ICG-TR-08/02. Graz University of Technology.Google ScholarGoogle Scholar
  39. Markus Unger, Thomas Pock, Werner Trobin, Daniel Cremers, and Horst Bischof. 2008b. TVSeg - Interactive Total Variation Based Image Segmentation. In BMVC 2008.Google ScholarGoogle Scholar
  40. J. Wang and E. Olson. 2016. AprilTag 2: Efficient and robust fiducial detection. In IROS 2016. 4193--4198.Google ScholarGoogle Scholar
  41. Qiaosong Wang, Haiting Lin, Yi Ma, Sing Bing Kang, and Jingyi Yu. 2015. Automatic Layer Separation using Light Field Imaging. CoRR abs/1506.04721 (2015). arXiv:1506.04721 http://arxiv.org/abs/1506.04721Google ScholarGoogle Scholar
  42. Sven Wanner and Bastian Goldluecke. 2013. Reconstructing Reflective and Transparent Surfaces from Epipolar Plane Images. In GCPR 2013.Google ScholarGoogle ScholarCross RefCross Ref
  43. Tianfan Xue, Michael Rubinstein, Ce Liu, and William T. Freeman. 2015. A computational approach for obstruction-free photography. ACM Trans. Graph. 34, 4 (2015), 79:1--79:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Shao-Wen Yang and Chieh-Chih Wang. 2008. Dealing with laser scanner failure: Mirrors and windows. In ICRA 2008. 3009--3015.Google ScholarGoogle Scholar
  45. S. W Yang and C. C. Wang. 2011. On Solving Mirror Reflection in LIDAR Sensing. IEEE/ASME Transactions on Mechatronics 16, 2 (April 2011), 255--265.Google ScholarGoogle ScholarCross RefCross Ref
  46. Y. Zhang, M. Ye, D. Manocha, and R. Yang. 2017. 3D Reconstruction in the Presence of Glass and Mirrors by Acoustic and Visual Fusion. PAMI (2017).Google ScholarGoogle Scholar
  47. Zhengyou Zhang. 2000. A Flexible New Technique for Camera Calibration. PAMI 22, 11 (Nov. 2000), 1330--1334. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 37, Issue 4
    August 2018
    1670 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3197517
    Issue’s Table of Contents

    Copyright © 2018 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 30 July 2018
    Published in tog Volume 37, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader