skip to main content
research-article

Formal Verification of Medical CPS: A Laser Incision Case Study

Published:05 July 2018Publication History
Skip Abstract Section

Abstract

The use of robots in operating rooms improves safety and decreases patient recovery time and surgeon fatigue, but it introduces new potential hazards that can lead to severe injury or even the loss of human life. Thus, safety has been perceived as a crucial system property since the early days by the industry, the medical community, and the regulatory agents. In this article, we discuss the application of the mathematically rigorous technique known as Formal Verification to analyze the safety properties of a laser incision case study, and we assess its safe and predictable operation. Like all formal methods approaches, our analysis has three distinct components: a method to create a model of the system, a language to specify the properties, and a strategy to prove rigorously that the behavior of the model fulfills the desired properties. The model of the system takes the form of a hybrid automaton consisting of a discrete control part that operates in a continuous environment. The safety constraints are formalized as reachability properties of the hybrid automaton model, while the verification strategy exploits the capabilities of the tool Ariadne to address the verification problem and answer the related questions ranging from safety to efficiency and effectiveness.

References

  1. Rajeev Alur. 2011. Formal verification of hybrid systems. In Proceedings of the 9th ACM International Conference on Embedded Software (EMSOFT’11). ACM, 273--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. h. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. 1995. The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138 (1995), 3--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Rajeev Alur and David L. Dill. 1994. A theory of timed automata. Theor. Comput. Sci. 126, 2 (1994), 183--235. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. 2004. TIMES: A tool for schedulability analysis and code generation of real-time systems. In Proceedings of the 1st International Workshop on Formal Modeling and Analysis of Timed Systems (FORMATS’03). Springer, 60--72.Google ScholarGoogle ScholarCross RefCross Ref
  5. Ryan A. Beasley. 2012. Medical robots: Current systems and research directions. J. Robot. 2012, Article 401613 (2012), 14 pages.Google ScholarGoogle Scholar
  6. Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. 2011. Developing UPPAAL over 15 years. Softw. Pract. Exper. 41, 2 (2011), 133--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Luca Benvenuti, Davide Bresolin, Pieter Collins, Alberto Ferrari, Luca Geretti, and Tiziano Villa. 2014. Assume-guarantee verification of nonlinear hybrid systems with ARIADNE. Int. J. Robust. Nonlin. Control 24, 4 (2014), 699--724.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. Berkelman and others. 2009. A compact modular teleoperated robotic system for laparoscopic surgery. Int. J. Robot. Res. 28, 9 (2009), 1198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Davide Bresolin, Luca Geretti, Riccardo Muradore, Paolo Fiorini, and Tiziano Villa. 2014. Verification of robotic surgery tasks by reachability analysis: A comparison of tools. In Proceedings of the 17th Euromicro Conference on Digital System Design (DSD’14). IEEE, 659--662. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Davide Bresolin, Luca Geretti, Riccardo Muradore, Paolo Fiorini, and Tiziano Villa. 2015. Formal verification of robotic surgery tasks by reachability analysis. Microprocess. Microsyst. 39, 8 (2015), 836--842. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. 2012. Taylor model flowpipe construction for non-linear hybrid systems. In Proceedings of the IEEE 33rd Real-Time Systems Symposium. IEEE Computer Society, 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. 2013. Flow*: An analyzer for non-linear hybrid systems. In Proceedings of the 25th International Conference on Computer Aided Verification (CAV’13) (LNCS), Vol. 8044. Springer, 258--263.Google ScholarGoogle ScholarCross RefCross Ref
  13. Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. 2015. HyComp: An SMT-based model checker for hybrid systems. In Proceedings of the 21st International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’15) (LNCS), Vol. 9035. Springer, 52--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kevin Cleary and Charles Nguyen. 2001. State of the art in surgical robotics: Clinical applications and technology challenges. Comput. Aided Surg. 6, 6 (2001), 312--328.Google ScholarGoogle ScholarCross RefCross Ref
  15. Brian L. Davies. 1996. A Discussion of Safety Issues for Medical Robots. MIT Press, Cambridge, MA, 287--296.Google ScholarGoogle Scholar
  16. J. P. Desai and N. Ayache. 2009. Editorial special issue on medical robotics. Int. J. Robot. Res. 28, 9 (September 2009), 1099--1100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Baowei Fei, Wan Sing Ng, Sunita Chauhan, and Chee Keong Kwoh. 2001. The safety issues of medical robotics. Reliabil. Eng. Syst. Safety 73, 2 (2001), 183--192.Google ScholarGoogle ScholarCross RefCross Ref
  18. Loris Fichera. 2016. Cognitive Supervision for Robot-Assisted Minimally Invasive Laser Surgery (1st ed.). Springer International Publishing, Switzerland. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Loris Fichera, Diego Pardo, Placido Illiano, Jesus Ortiz, Darwin G. Caldwell, and Leonardo S. Mattos. 2015. Online estimation of laser incision depth for transoral microsurgery: Approach and preliminary evaluation. Int. J. Med. Robot. Comput. Assist. Surg. 12, 1 (March 2015), 53--61.Google ScholarGoogle Scholar
  20. G. Frehse. 2008. PHAVer: Algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transfer 10, 3 (2008), 263--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler. 2011. SpaceEx: Scalable verification of hybrid systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11) (LNCS), Vol. 6806. Springer, 379--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. N. Fulton, S. Mitsch, J. D. Quesel, M. Völp, and A. Platzer. 2015. KeYmaera X: An aXiomatic tactical theorem prover for hybrid systems. In Proceedings of the International Conference on Automated Deduction (CADE’15), Vol. 9195. Springer, 527--538.Google ScholarGoogle Scholar
  23. E. Guglielmelli, M. J. Johnson, and T. Shibata. 2009. Guest editorial special issue on rehabilitation robotics. IEEE Trans. Robot. 25, 3 (June 2009), 477--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. T. A. Henzinger. 1996. The theory of hybrid automata. In Proceedings of the 11th IEEE Symposium on Logic in Computer Science (LICS’96). IEEE Computer Society, 278--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. 1998. What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57, 1 (1998), 94--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Thomas A. Henzinger and Joseph Sifakis. 2006. The embedded systems design challenge. In Proceedings of the 14th International Symposium on Formal Methods (FM’06) (LNCS), Vol. 4085. Springer, 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Eunkyoung Jee, Shaohui Wang, Jeong-Ki Kim, Jaewoo Lee, Oleg Sokolsky, and Insup Lee. 2010. A safety-assured development approach for real-time software. In Proceedings of the 16th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA’10). IEEE, 133--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. R. Jetley, S. Purushothaman Iyer, and P. Jones. 2006. A formal methods approach to medical device review. Computer 39, 4 (April 2006), 61--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Timothy L. Johnson. 2007. Improving automation software dependability: A role for formal methods? Control Eng. Practice 15, 11 (2007), 1403--1415.Google ScholarGoogle ScholarCross RefCross Ref
  30. P. Kazanzides, G. Fichtinger, G. D. Hager, A. M. Okamura, L. L. Whitcomb, and R. H. Taylor. 2008. Surgical and interventional robotics-core concepts, technology, and design. IEEE Robot. Autom. Mag. 15, 2 (2008), 122--130.Google ScholarGoogle ScholarCross RefCross Ref
  31. BaekGyu Kim, Anaheed Ayoub, Oleg Sokolsky, Insup Lee, Paul L. Jones, Yi Zhang, and Raoul Praful Jetley. 2011. Safety-assured development of the GPCA infusion pump software. In Proceedings of the 11th International Conference on Embedded Software (EMSOFT’11). ACM, 155--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yanni Kouskoulas, David Renshaw, André Platzer, and Peter Kazanzides. 2013. Certifying the safe design of a virtual fixture control algorithm for a surgical robot. In Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control (HSCC’13). ACM, 263--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. H. Kress-Gazit. 2011. Robot challenges: Toward development of verification and synthesis techniques {from the Guest Editors}. IEEE Robot. Autom. Mag. 18, 3 (Sept. 2011), 22--23.Google ScholarGoogle Scholar
  34. I. Lee, O. Sokolsky, S. Chen, J. Hatcliff, E. Jee, B. Kim, A. King, M. Mullen-Fortino, S. Park, A. Roederer, and K. K. Venkatasubramanian. 2012. Challenges and research directions in medical cyber--physical systems. Proc. IEEE 100, 1 (Jan 2012), 75--90.Google ScholarGoogle Scholar
  35. Col Michael R. Marohn and Capt. Eric J. Hanly. 2004. Twenty-first century surgery using twenty-first century technology: surgical robotics. Curr. Surgery 61, 5 (2004), 466--473.Google ScholarGoogle ScholarCross RefCross Ref
  36. Maja Matarić, Allison M. Okamura, and Henrik I. Christensen. 2013. Roadmap for medical and healthcare robotics. In A Roadmap for U.S. Robotics—From Internet to Robotics (2013 ed.). Georgia Institute of Technology, Atlanta, GA, Chapter 2, 27--62.Google ScholarGoogle Scholar
  37. L. S. Mattos, G. Dagnino, G. Becattini, M. Dellepiane, and D. G. Caldwell. 2011. A virtual scalpel system for computer-assisted laser microsurgery. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 1359--1365.Google ScholarGoogle Scholar
  38. R. Muradore, D. Bresolin, L. Geretti, P. Fiorini, and T. Villa. 2011. Robotic surgery: Formal verification of plans. IEEE Robot. Autom. Mag. 18, 3 (2011), 24--32.Google ScholarGoogle ScholarCross RefCross Ref
  39. Markolf H. Niemz. 2007. Laser-tissue Interactions. Fundamentals and Applications. Springer, Berlin.Google ScholarGoogle Scholar
  40. Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli, Davide Bresolin, Luca Geretti, and Tiziano Villa. 2015. A platform-based design methodology with contracts and related tools for the design of cyber-physical systems. Proc. IEEE 103, 11 (2015), 2104--2132.Google ScholarGoogle ScholarCross RefCross Ref
  41. S. Ratschan and Z. She. 2007. Safety verification of hybrid systems by constraint propagation based abstraction refinement. ACM Trans. Embed. Comput. Syst. 6, 1, Article 8 (2007), 23 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. A. Sangiovanni-Vincentelli. 2007. Quo vadis, SLD? Reasoning about the trends and challenges of system level design. Proc. IEEE 95, 3 (2007), 467--506.Google ScholarGoogle ScholarCross RefCross Ref
  43. R. H. Taylor. 2006. A perspective on medical robotics. Proc. IEEE 94, 9 (Sept. 2006), 1652--1664.Google ScholarGoogle ScholarCross RefCross Ref
  44. R. H. Taylor, H. A. Paul, P. Kazanzides, B. D. Mittelstadt, W. Hanson, J. Zuhars, B. Williamson, B. Musits, E. Glassman, and W. L. Bargar. 1991. Taming the bull: Safety in a precise surgical robot. In Proceedings of the 5th International Conference on Advanced Robotics (ICAR’91), Vol. 1. IEEE, 865--870.Google ScholarGoogle Scholar

Index Terms

  1. Formal Verification of Medical CPS: A Laser Incision Case Study

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Cyber-Physical Systems
          ACM Transactions on Cyber-Physical Systems  Volume 2, Issue 4
          Special Issue on Medical CPS Papers
          October 2018
          313 pages
          ISSN:2378-962X
          EISSN:2378-9638
          DOI:10.1145/3236466
          • Editor:
          • Tei-Wei Kuo
          Issue’s Table of Contents

          Copyright © 2018 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 5 July 2018
          • Accepted: 1 September 2017
          • Revised: 1 April 2017
          • Received: 1 August 2016
          Published in tcps Volume 2, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader