skip to main content
survey

A Functional Taxonomy of Music Generation Systems

Authors Info & Claims
Published:26 September 2017Publication History
Skip Abstract Section

Abstract

Digital advances have transformed the face of automatic music generation since its beginnings at the dawn of computing. Despite the many breakthroughs, issues such as the musical tasks targeted by different machines and the degree to which they succeed remain open questions. We present a functional taxonomy for music generation systems with reference to existing systems. The taxonomy organizes systems according to the purposes for which they were designed. It also reveals the inter-relatedness amongst the systems. This design-centered approach contrasts with predominant methods-based surveys and facilitates the identification of grand challenges to set the stage for new breakthroughs.

References

  1. K. Agres, J. E. DeLong, and M. Spivey. 2009. The sparsity of simple recurrent networks in musical structure learning. In Proceedings of the 31st Annual Conference of the Cognitive Science Society. 3099--3104.Google ScholarGoogle Scholar
  2. K. Agres, J. Forth, and G. A. Wiggins. 2017. Evaluation of musical creativity and musical metacreation systems. Comput. Entertain. 14, 3, Article 3 (Jan. 2017), 33 pages.Google ScholarGoogle Scholar
  3. K. Agres, D. Herremans, L. Bigo, and D. Conklin. 2016. Harmonic structure predicts the enjoyment of uplifting trance music. Frontiers Psychol. 7 (2016), 1999.Google ScholarGoogle Scholar
  4. G. Aguilera, J. Luis Galán, R. Madrid, A. M. Martínez, Y. Padilla, and P. Rodríguez. 2010. Automated generation of contrapuntal musical compositions using probabilistic logic in Derive. Math. Comput. Simul. 80, 6 (2010), 1200--1211. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Allan and C. K. I. Williams. 2005. Harmonising chorales by probabilistic inference. Adv. Neural Info. Process. Syst. 17 (2005), 25--32.Google ScholarGoogle Scholar
  6. C. Allauzen, M. Crochemore, and M. Raffinot. 1999. Factor oracle: A new structure for pattern matching. In Proceedings of the International Conference on Current Trends in Theory and Practice of Computer Science. Springer, 295--310. Google ScholarGoogle ScholarCross RefCross Ref
  7. A. Alpern. 1995. Techniques for algorithmic composition of music. Retrieved from http://hamp.hampshire.edu/∼/algocomp/algocomp95.Google ScholarGoogle Scholar
  8. T. Anders. 2007. Composing Music by Composing Rules: Design and Usage of a Generic Music Constraint System. Ph.D. Dissertation. Queen’s University Belfast.Google ScholarGoogle Scholar
  9. T. Anders and E. R. Miranda. 2009. A computational model that generalises Schoenbergs guidelines for favourable chord progressions. In Proceedings of the Sound and Music Computing Conference. 48--52.Google ScholarGoogle Scholar
  10. C. Ariza. 2002. Prokaryotic groove: Rhythmic cycles as real-value encoded genetic algorithms. In Proceedings of the International Computer Music Conference (ICMC’02). 561--568.Google ScholarGoogle Scholar
  11. G. Assayag, G. Bloch, and M. Chemillier. 2006. OMax-ofon. Proceedings of the Conference on Sound and Music Computing (SMC’06).Google ScholarGoogle Scholar
  12. G. Assayag, G. Bloch, A. Cont, and S. Dubnov. 2010. Interaction with machine improvisation. In The Structure of Style. Springer, 219--245. Google ScholarGoogle ScholarCross RefCross Ref
  13. G. Assayag, S. Dubnov, and O. Delerue. 1999a. Guessing the composer’s mind. In Proceedings of the International Computer Music Conference (ICMC’99). Bejing, China, 1--1.Google ScholarGoogle Scholar
  14. G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue. 1999b. Computer-assisted composition at IRCAM: From patchwork to openmusic. Comput. Music J. 23, 3 (1999), 59--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. M. Balliauw, D. Herremans, D. Palhazi Cuervo, and K. Sörensen. 2017. A variable neighbourhood search algorithm to generate piano fingerings for polyphonic sheet music. Int. Trans. Operat. Res: Special Issue on Variable Neighbourhood Search 24, 3 (2017), 509--535.Google ScholarGoogle ScholarCross RefCross Ref
  16. L. E. Baum and T. Petrie. 1966. Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37, 6 (1966), 1554--1563. Google ScholarGoogle ScholarCross RefCross Ref
  17. B. Bemman and D. Meredith. 2016. Generating milton babbitts all-partition arrays. J. New Music Res. 45, 2 (2016), 184--204. Google ScholarGoogle ScholarCross RefCross Ref
  18. Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 2 (1994), 157--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Bigo and D. Conklin. 2015. A viewpoint approach to symbolic music transformation. In Proceedings of the International Symposium on Computer Music Multidisciplinary Research. Springer, 213--227.Google ScholarGoogle Scholar
  20. J. A. Biles. 1998. Interactive GenJam: Integrating real-time performance with a genetic algorithm. In Proceedings of the 1998 International Computer Music Conference. 232--235.Google ScholarGoogle Scholar
  21. J. A. Biles. 2001. Autonomous GenJam: Eliminating the fitness bottleneck by eliminating fitness. In Proceedings of the GECCO-2001 Workshop on Non-routine Design with Evolutionary Systems. Morgan Kaufmann, San Francisco, CA.Google ScholarGoogle Scholar
  22. G. Bloch, S. Dubnov, and G. Assayag. 2008. Introducing video features and spectral descriptors in the OMax improvisation system. In Proceedings of the International Computer Music Conference, Vol. 8.Google ScholarGoogle Scholar
  23. N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. 2012. Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In Proceedings of the 29th International Conference on Machine Learning (ICML’12), John Langford and Joelle Pineau (Eds.). ACM, New York, NY, 1159--1166.Google ScholarGoogle Scholar
  24. R. Bresin and A. Friberg. 2000. Emotional coloring of computer-controlled music performances. Comput. Music J. 24, 4 (2000), 44--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. F. P. Brooks, A. L. Hopkins, P. G. Neumann, and W. V. Wright. 1957. An experiment in musical composition. IRE Trans. Elect. Comput. 3 (1957), 175--182. Google ScholarGoogle ScholarCross RefCross Ref
  26. D. Brown. 2012. Mezzo: An adaptive, real-time composition program for game soundtracks. In Proceedings of the AIIDE Workshop on Musical Metacreativity.Google ScholarGoogle Scholar
  27. T. M. Browne and C. Fox. 2009. Global expectation-violation as fitness function in evolutionary composition. In Applications of Evolutionary Computing. Springer, 538--546. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. G. Carpentier, G. Assayag, and E. Saint-James. 2010. Solving the musical orchestration problem using multiobjective constrained optimization with a genetic local search approach. J. Heurist. 16, 5 (2010), 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. P. Casella and A. Paiva. 2001. Magenta: An architecture for real time automatic composition of background music. In Intelligent Virtual Agents. Springer, 224--232. Google ScholarGoogle ScholarCross RefCross Ref
  30. M. Chemillier. 2001. Improvising jazz chord sequences by means of formal grammars. In Journées d’informatique Musicale. 121--126.Google ScholarGoogle Scholar
  31. E. Chew. 2014. Mathematical and Computational Modeling of Tonality: Theory and Applications. Vol. 204. Springer, New York. Google ScholarGoogle ScholarCross RefCross Ref
  32. C.-H. Chuan and E. Chew. 2011. Generating and evaluating musical harmonizations that emulate style. Comput. Music J. 35, 4 (2011), 64--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. K. Collins. 2008. Game Sound: An Introduction to the History, Theory, and Practice of Video Game Music and Sound Design. MIT Press.Google ScholarGoogle ScholarCross RefCross Ref
  34. K. Collins. 2009. An introduction to procedural music in video games. Contemp. Music Rev. 28, 1 (2009), 5--15. Google ScholarGoogle ScholarCross RefCross Ref
  35. N. Collins. 2012. Automatic composition of electroacoustic art music utilizing machine listening. Comput. Music J. 36, 3 (2012), 8--23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. D. Conklin. 2003. Music generation from statistical models. In Proceedings of the AISB Symposium on Artificial Intelligence and Creativity in the Arts and Sciences. Aberystwyth, Wales, 30--35.Google ScholarGoogle Scholar
  37. D. Conklin and I. Witten. 1995. Multiple viewpoint systems for music prediction. J. New Music Res. 24, 1 (1995), 51--73. Google ScholarGoogle ScholarCross RefCross Ref
  38. D. Cope. 1996. Experiments in Musical Intelligence. Vol. 12. AR Editions, Madison, WI.Google ScholarGoogle Scholar
  39. D. Cope. 2000. New Directions in Music. Waveland Press.Google ScholarGoogle Scholar
  40. D. Cope. 2004. A musical learning algorithm. Comput. Music J. 28, 3 (2004), 12--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. N. Cunha, A. Subramanian, and D. Herremans. 2016. Uma abordagem baseada em programação linear inteira para a geração de solos de guitarra. XLVIII Simpósio Brasileiro de Pesquisa Operacional (SBPO) (09/2016 2016).Google ScholarGoogle Scholar
  42. R. B. Dannenberg and E. Brandt. 1996. A flexible real-time software synthesis system. In Proceedings of the International Computer Music Conference, International Computer Music Association. 270--273.Google ScholarGoogle Scholar
  43. S. Davismoon and J. Eccles. 2010. Combining musical constraints with Markov transition probabilities to improve the generation of creative musical structures. In Applications of Evolutionary Computation. Springer, 361--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. R. De Prisco, A. Eletto, A. Torre, and R. Zaccagnino. 2010. A neural network for bass functional harmonization. Appl. Evolution. Comput. 6025 (2010), 351--360.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. R. De Prisco, G. Zaccagnino, and R. Zaccagnino. 2012. A differential evolution algorithm assisted by ANFIS for music fingering. In Swarm and Evolutionary Computation. Springer, 48--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. E. Deruty. 2016. Goal-oriented mixing. In Proceedings of the 2nd AES Workshop on Intelligent Music Production, Vol. 13. London.Google ScholarGoogle Scholar
  47. M. Dostál. 2013. Evolutionary music composition. In Handbook of Optimization. Springer, 935--964.Google ScholarGoogle Scholar
  48. S. Dubnov. 2006. Spectral anticipations. Comput. Music J. 30, 2 (2006), 63--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. S. Dubnov and G. Assayag. 2012. Music design with audio oracle using information rate. In Proceedings of the Conference on Musical Metacreation: Papers from the 2012 AIIDE Workshop.Google ScholarGoogle Scholar
  50. M. O. Duff. 1989. Backpropagation and bachs 5th cello suite (Sarabande). In Proceedings of the International Joint Conference on Neural Networks. 575. Google ScholarGoogle ScholarCross RefCross Ref
  51. K. Ebcioğlu. 1988. An expert system for harmonizing four-part chorales. Comput. Music J. 12, 3 (1988), 43--51.Google ScholarGoogle ScholarCross RefCross Ref
  52. D. Eck and J. Schmidhuber. 2002. A first look at music composition using lstm recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale (2002).Google ScholarGoogle Scholar
  53. A. Eigenfeldt and P. Pasquier. 2009. A realtime generative music system using autonomous melody, harmony, and rhythm agents. In Proceedings of the 12th Generative Art Conference (GA’09).Google ScholarGoogle Scholar
  54. M. M. Farbood. 2012. A parametric, temporal model of musical tension. Music Percept. 29, 4 (2012), 387--428. Google ScholarGoogle ScholarCross RefCross Ref
  55. M. Farbood, H. Kaufman, and K. Jennings. 2007. Composing with hyperscore: An intuitive interface for visualizing musical structure. In Proceedings of the International Computer Music Conference (ICMC’07), Vol. 59.Google ScholarGoogle Scholar
  56. M. Farbood and B. Schoner. 2001. Analysis and synthesis of palestrina-style counterpoint using markov chains. In Proceedings of the International Computer Music Conference. 471--474.Google ScholarGoogle Scholar
  57. J. D. Fernández and F. Vico. 2013. AI methods in algorithmic composition: A comprehensive survey. J. Artific. Intell. Res. (2013), 513--582.Google ScholarGoogle Scholar
  58. A. R. J. François, E. Chew, and D. Thurmond. 2007. Visual feedback in performer-machine interaction for musical improvisation. In Proceedings of the 7 International Conference on New Interfaces for Musical Expression. ACM, 277--280.Google ScholarGoogle Scholar
  59. A. R. J. François, I. Schankler, and E. Chew. 2013. Mimi4x: An interactive audio-visual installation for high-level structural improvisation. Int. J. Arts Technol. 6, 2 (2013), 138--151.Google ScholarGoogle ScholarCross RefCross Ref
  60. J. A. Franklin. 2001. Multi-phase learning for jazz improvisation and interaction. In Proceedings of the 8th Biennial Symposium for Arts and Technology.Google ScholarGoogle Scholar
  61. J. A. Franklin. 2006. Recurrent neural networks for music computation. INFORMS J. Comput. 18, 3 (2006), 321--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. J. J. Fux and A. Mann. 1971. The Study of Counterpoint from Johann Joseph Fux’s Gradus Ad Parnassum—1725. Norton, New York.Google ScholarGoogle Scholar
  63. M. Geis and M. Middendorf. 2007. An ant colony optimizer for melody creation with baroque harmony. In Proceedings of the IEEE Congress on Evolutionary Computation. 461--468. Google ScholarGoogle ScholarCross RefCross Ref
  64. S. Gherman. 2008. Harmony and its functionality: A gloss on the substantial similarity test in music copyrights. Fordham Intell. Prop. Media Ent. LJ 19 (2008), 483.Google ScholarGoogle Scholar
  65. J. Gillick, K. Tang, and R. M. Keller. 2010. Machine learning of jazz grammars. Comput. Music J. 34, 3 (2010), 56--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. M. Grachten, C. E. Cancino Chacón, and G. Widmer. 2014. Analysis and prediction of expressive dynamics using Bayesian linear models. In Proceedings of the 1st International Workshop on Computer and Robotic Systems for Automatic Music Performance. 545--552.Google ScholarGoogle Scholar
  67. A. Hawryshkewich, P. Pasquier, and A. Eigenfeldt. 2011. Beatback: A real-time interactive percussion system for rhythmic practise and exploration. In Proceedings of the NIME Conference. 100--105.Google ScholarGoogle Scholar
  68. S. A. Hedges. 1978. Dice music in the eighteenth century. Music Lett. 59, 2 (1978), 180--187. Google ScholarGoogle ScholarCross RefCross Ref
  69. D. Herremans and E. Chew. 2016a. MorpheuS: Automatic music generation with recurrent pattern constraints and tension profiles. Proceedings of the IEEE TENCON (November 2016). Singapore. Google ScholarGoogle ScholarCross RefCross Ref
  70. D. Herremans and E. Chew. 2016b. Tension ribbons: Quantifying and visualising tonal tension. In Proceedings of the 2nd International Conference on Technologies for Music Notation and Representation (TENOR’16). Cambridge, UK.Google ScholarGoogle Scholar
  71. D. Herremans and E. Chew. 2017. MorpheuS: Generating structured music with constrained patterns and tension. IEEE Transactions on Affective Computing. PP (in press). (2017). DOI:10.1109/TAFFC.2017.2737984 Google ScholarGoogle ScholarCross RefCross Ref
  72. D. Herremans and C.-H. Chuan. 2017. Modeling musical context with word2vec. Proceedings of the 1st International Workshop on Deep Learning and Music 1 (05/2017 2017), Anchorage, US, 11--18.Google ScholarGoogle Scholar
  73. D. Herremans and K. Sörensen. 2012. Composing first species counterpoint with a variable neighbourhood search algorithm. J. Math. Arts 6, 4 (2012), 169--189.Google ScholarGoogle ScholarCross RefCross Ref
  74. D Herremans and K Sörensen. 2013. Composing fifth species counterpoint music with a variable neighborhood search algorithm. Expert Syst. Appl. 40, 16 (2013), 6427--6437. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. D. Herremans and K. Sorensen. 2013. FuX, an android app that generates counterpoint. In Proceedings of the IEEE Symposium on Computational Intelligence for Creativity and Affective Computing (CICAC’13). Singapore, 48--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  76. D. Herremans, K. Sörensen, and D. Martens. 2015a. Classification and generation of composer-specific music using global feature models and variable neighborhood search. Computer Music Journal 39 (2015), 71--91. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. D. Herremans, S. Weisser, K. Sörensen, and D. Conklin. 2015b. Generating structured music for bagana using quality metrics based on Markov models. Expert Syst. Appl. 42, 21 (2015), 7424--7435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. H. Hild, J. Feulner, and W. Menzel. 1992. HARMONET: A neural net for harmonizing chorales in the style of JS Bach. In Adv. Neural Info. Process. Syst. 267--274.Google ScholarGoogle Scholar
  79. L. Hiller. 1989. Lejaren Hiller: Computer Music Retrospective (1957--1985). Wergo Schallplatten. 79 pages.Google ScholarGoogle Scholar
  80. A. Hiller Jr, L. and L. M. Isaacson. 1957. Musical composition with a high speed digital computer. In Audio Engineering Society Convention 9. Audio Engineering Society. Google ScholarGoogle ScholarDigital LibraryDigital Library
  81. S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory. Neural Comput. 9, 8 (1997), 1735--1780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. J. H. Holland. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press.Google ScholarGoogle Scholar
  83. A. Horner and D. E. Goldberg. 1991. Genetic algorithms and computer-assisted music composition. Urbana 51, 61801 (1991), 437--441.Google ScholarGoogle Scholar
  84. C. Z. A. Huang and E. Chew. 2005. Palestrina pal: A grammar checker for music compositions in the style of Palestrina. In Proceedings of the 5th Conference on Understanding and Creating Music.Google ScholarGoogle Scholar
  85. T. A. Hummel. 2005. Simulation of human voice timbre by orchestration of acoustic music instruments. In Proceedings of International Computer Music Conference (ICMC’05). 185.Google ScholarGoogle Scholar
  86. D. B. Huron. 2006. Sweet Anticipation: Music and the Psychology of Expectation. MIT press.Google ScholarGoogle Scholar
  87. S. Johnson. 2006. The long zoom. New York Times Magazine (2006), 50--55.Google ScholarGoogle Scholar
  88. R. M. Keller and D. R. Morrison. 2007. A grammatical approach to automatic improvisation. In Proceedings of the 4th Sound and Music Conference, Lefkada, Greece, July. 330--336. Google ScholarGoogle ScholarCross RefCross Ref
  89. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (1983), 671--680.Google ScholarGoogle Scholar
  90. J. P. Kirnberger. 1757. Der allezeit fertige menuetten-und polonoisenkomponist. Berlin: Germany Winter (1757). Google ScholarGoogle ScholarCross RefCross Ref
  91. C. L. Krumhansl. 2001. Cognitive Foundations of Musical Pitch. Oxford University Press. Google ScholarGoogle ScholarCross RefCross Ref
  92. S. Lattner, M. Grachten, K. Agres, and C. E. C. Chacón. 2015. Probabilistic segmentation of musical sequences using restricted Boltzmann machines. In Proceedings of the International Conference on Mathematics and Computation in Music. Springer, 323--334.Google ScholarGoogle ScholarCross RefCross Ref
  93. H.-R. Lee and J. S. R. Jang. 2004. i-Ring: A system for humming transcription and chord generation. In Proceedings of the 2004 IEEE International Conference on Multimedia and Expo (ICME’04). Vol. 2. IEEE, 1031--1034. Google ScholarGoogle ScholarCross RefCross Ref
  94. F. Lerdahl and R. Jackendoff. 1983. An overview of hierarchical structure in music. Music Percept.: Interdisc. J. 1, 2 (1983), 229--252. Google ScholarGoogle ScholarCross RefCross Ref
  95. G. E. Lewis. 2000. Too many notes: Computers, complexity and culture in voyager. Leonardo Music J. 10 (2000), 33--39.Google ScholarGoogle ScholarCross RefCross Ref
  96. J. P. Lewis. 1991. Creation by refinement and the problem of algorithmic music composition. Music and Connectionism (1991), 212. Google ScholarGoogle ScholarCross RefCross Ref
  97. T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. V. Fedoroff. 2006. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proc. Natl. Acad. Sci. U.S.A. 103, 50 (2006), 19033--19038.Google ScholarGoogle ScholarCross RefCross Ref
  98. Y. J. Liebesman. 2007. Using innovative technologies to analyze for similarity between musical works in copyright infringement disputes. AIPLA Quart. J. 35 (2007), 331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. C.-C. Lin and D. S.-M. Liu. 2006. An intelligent virtual piano tutor. In Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and its Applications. ACM, 353--356.Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. A. Lovelace. 1843. Notes on L. Menabreas sketch of the analytical engine invented by Charles Babbage, Esq.Taylors Sci. Mem. 3 (1843).Google ScholarGoogle Scholar
  101. M. Marchini and H. Purwins. 2010. Unsupervised generation of percussion sound sequences from a sound example. In Proceedings of the Sound and Music Computing Conference, Vol. 220.Google ScholarGoogle Scholar
  102. A. Marsden. 2004. Novagen: A combination of Eyesweb and an elaboration-network representation for the generation of melodies under gestural control. In Proceedings of the ConGAS Symposium on Gesture Interfaces for Multimedia Systems.Google ScholarGoogle Scholar
  103. J. McCormack. 1996. Grammar based music composition. Complex Syst. 96 (1996), 321--336. Google ScholarGoogle ScholarCross RefCross Ref
  104. W. S. McCulloch and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 4 (1943), 115--133. Google ScholarGoogle ScholarCross RefCross Ref
  105. R. A. McIntyre. 1994. Bach in a box: The evolution of four part baroque harmony using the genetic algorithm. In Proceedings of the 1994 IEEE World Congress on Computational Intelligence: Evolutionary Computation. IEEE, 852--857.Google ScholarGoogle ScholarCross RefCross Ref
  106. M. McVicar, S. Fukayama, and M. Goto. 2014. AutoLeadGuitar: Automatic generation of guitar solo phrases in the tablature space. In Proceedings of the 2014 12th International Conference on Signal Processing (ICSP’14). IEEE, 599--604.Google ScholarGoogle Scholar
  107. D. Meredith. 2013. COSIATEC and SIATECCompress: Pattern discovery by geometric compression. In Proceedings of the International Society for Music Information Retrieval Conference.Google ScholarGoogle Scholar
  108. N. Mladenović and P. Hansen. 1997. Variable neighborhood search. Comput. Operat. Res. 24, 11 (1997), 1097--1100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. J. A. Moorer. 1972. Music and computer composition. Commun. ACM 15, 2 (1972), 104--113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. R. Morales-Manzanares. 1992. Non-deterministic automatons controlled by rules for composition. In Proceedings of the International Computer Music Conference. 400--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. R. Morales-Manzanares, E. F. Morales, R. Dannenberg, and J. Berger. 2001. SICIB: An interactive music composition system using body movements. Comput. Music J. 25, 2 (2001), 25--36.Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. M. C. Mozer. 1991. Connectionist music composition based on melodic, stylistic and psychophysical constraints. Music Connect. (1991), 195--211.Google ScholarGoogle Scholar
  113. M. Müller and J. Driedger. 2012. Data-driven sound track generation. In Multimodal Music Processing. 175--194. Google ScholarGoogle ScholarCross RefCross Ref
  114. J.-I. Nakamura, T. Kaku, K. Hyun, T. Noma, and S. Yoshida. 1994. Automatic background music generation based on actors’ mood and motions. J. Visual. Comput. Animat. 5, 4 (1994), 247--264. Google ScholarGoogle ScholarCross RefCross Ref
  115. G. Nierhaus. 2009. Algorithmic Composition: Paradigms of Automated Music Generation. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  116. J. Nika, D. Bouche, J. Bresson, M. Chemillier, and G. Assayag. 2015. Guided improvisation as dynamic calls to an offline model. In Sound and Music Computing (SMC’15).Google ScholarGoogle Scholar
  117. H. Norden. 1969. Fundamental Counterpoint. Crescendo Publishing Co., Boston. Google ScholarGoogle ScholarCross RefCross Ref
  118. F. Pachet. 2003. The continuator: Musical interaction with style. J. New Music Res. 32, 3 (2003), 333--341.Google ScholarGoogle ScholarCross RefCross Ref
  119. F. Pachet. 2016. A joyful ode to automatic orchestration. ACM Trans. Intell. Syst. Technol. (TIST) 8, 2 (2016), 18.Google ScholarGoogle Scholar
  120. F. Pachet, G. Roy, and P. Barbieri. 2001. Finite-length Markov processes with constraints. Transition 6, 1/3 (2001).Google ScholarGoogle Scholar
  121. A. Papadopoulos, P. Roy, and F. Pachet. 2014. Avoiding plagiarism in markov sequence generation. In Proceedings of the Innovative Applications of Artificial Intelligence Conference (AAAI’14). Quebec.Google ScholarGoogle Scholar
  122. G. Papadopoulos and G. Wiggins. 1999. AI methods for algorithmic composition: A survey, a critical view and future prospects. In Proceedings of the AISB Symposium on Musical Creativity. Edinburgh, UK, 110--117.Google ScholarGoogle Scholar
  123. R. Parke, E. Chew, and C. Kyriakakis. 2007. Quantitative and visual analysis of the impact of music on perceived emotion of film. Comput. Entertain. (CIE) 5, 3 (2007), 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. M. T. Pearce, M. H. Ruiz, S. Kapasi, G. A. Wiggins, and J. Bhattacharya. 2010. Unsupervised statistical learning underpins computational, behavioural, and neural manifestations of musical expectation. NeuroImage 50, 1 (2010), 302--313.Google ScholarGoogle ScholarCross RefCross Ref
  125. M. Pearce and G. Wiggins. 2001. Towards a framework for the evaluation of machine compositions. In Proceedings of the Symposium on Artificial Intelligence and Creativity in the Arts and Sciences (AISB’01). 22--32. Google ScholarGoogle ScholarCross RefCross Ref
  126. I. Peretz, D. Gaudreau, and A.-M. Bonnel. 1998. Exposure effects on music preference and recognition. Memory Cogn. 26, 5 (1998), 884--902.Google ScholarGoogle ScholarCross RefCross Ref
  127. S. Phon-Amnuaisuk and G. Wiggins. 1999. The four-part harmonisation problem: A comparison between genetic algorithms and a rule-based system. In Proceedings of the Symposium on Musical Creativity (AISB’99). 28--34. Google ScholarGoogle ScholarCross RefCross Ref
  128. R. C. Pinkerton. 1956. Information theory and melody. Sci. Amer. 194, 2 (1956), 77--86.Google ScholarGoogle Scholar
  129. J. Polito, J. Daida, and T. Bersano-Begey. 1997. Musica ex machina: Composing 16th-century counterpoint with genetic programming and symbiosis. In Proceedings of the Conference on Evolutionary Programming VI (Lecture Notes in Computer Science), Vol. 1213. Springer, 113--124.Google ScholarGoogle Scholar
  130. A. Prechtl, R. Laney, A. Willis, and R. Samuels. 2014a. Algorithmic music as intelligent game music. In Proceedings of the 50th Annual Convention of the AISB, 1--4 April 2014, London, UK. Google ScholarGoogle ScholarDigital LibraryDigital Library
  131. A. Prechtl, R. Laney, A. Willis, and R. Samuels. 2014b. Methodological approaches to the evaluation of game music systems. In Proceedings of the 9th Audio Mostly: A Conference on Interaction With Sound. ACM, 26. Google ScholarGoogle ScholarCross RefCross Ref
  132. J. Pritchett. 1994. The completion of John Cage’s freeman etudes. Perspectives of New Music (1994), 264--270.Google ScholarGoogle Scholar
  133. D. Psenicka. 2003. Sporch: An algorithm for orchestration based on spectral analyses of recorded sounds. In Proceedings of International Computer Music Conference (ICMC’03). 184.Google ScholarGoogle Scholar
  134. D. Radicioni, L. Anselma, and V. Lombardo. 2004. An algorithm to compute fingering for string instruments. In Proceedings of the National Congress of the Associazione Italiana di Scienze Cognitive, Ivrea, Italy.Google ScholarGoogle Scholar
  135. A. Radisavljevic and P. Driessen. 2004. Path difference learning for guitar fingering problem. In Proceedings of the International Computer Music Conference, Vol. 28.Google ScholarGoogle Scholar
  136. R. Raines. 2015. Composition in the Digital World: Conversations with 21st Century American Composers. Oxford University Press. 241 pages.Google ScholarGoogle Scholar
  137. D. Ralley. 1995. Genetic algorithms as a tool for melodic development. Urbana 101 (1995), 61801. Google ScholarGoogle ScholarDigital LibraryDigital Library
  138. C. Roig, L. J. Tardón, I. Barbancho, and A. M. Barbancho. 2014. Automatic melody composition based on a probabilistic model of music style and harmonic rules. Knowl.-Based Syst. 71 (2014), 419--434.Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1988. Learning representations by back-propagating errors. Cogn. Model. 5, 3 (1988), 1. Google ScholarGoogle ScholarCross RefCross Ref
  140. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1985. Learning Internal Representations by Error Propagation. Technical Report. DTIC Document.Google ScholarGoogle Scholar
  141. J. Rutherford and G. Wiggins. 2002. An experiment in the automatic creation of music which has specific emotional content. In Proceedings of the 7th International Conference on music Perception and Cognition. Google ScholarGoogle ScholarCross RefCross Ref
  142. S. I. Sayegh. 1989. Fingering for string instruments with the optimum path paradigm. Comput. Music J. (1989), 76--84.Google ScholarGoogle Scholar
  143. I. Schankler, E. Chew, and A. François. 2014. Improvising with digital auto-scaffolding: How mimi changes and enhances the creative process. In Digital Da Vinci. Springer, 99--125.Google ScholarGoogle Scholar
  144. V. Sébastien, H. Ralambondrainy, O. Sébastien, and N. Conruyt. 2012. Score analyzer: Automatically determining scores difficulty level for instrumental e-learning. In Proceedings of Conference of the International Society for Music Information Retrieval (ISMIR’12). 571--576. Google ScholarGoogle ScholarCross RefCross Ref
  145. R. Siddharthan. 1999. Music, mathematics and bach. Resonance 4, 5 (1999), 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  146. I. Simon, D. Morris, and S. Basu. 2008. MySong: Automatic accompaniment generation for vocal melodies. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 725--734.Google ScholarGoogle Scholar
  147. P. Smolensky. 1986. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1. Chapter: Information Processing in dynamical systems: Foundations of harmony theory. MIT Press, Cambridge, MA. 15 (1986), 18. Google ScholarGoogle ScholarCross RefCross Ref
  148. M. J. Steedman. 1984. A generative grammar for jazz chord sequences. Music Perception (1984), 52--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  149. B. L. Sturm. 2006. Adaptive concatenative sound synthesis and its application to micromontage composition. Comput. Music J. 30, 4 (2006), 46--66. Google ScholarGoogle ScholarCross RefCross Ref
  150. T. Tanaka, B. Bemman, and D. Meredith. 2016. Constraint programming formulation of the problem of generating Milton Babbitt’s all-partition arrays. In Proceedings of the 22nd International Conference on Principles and Practice of Constraint Programming. Toulouse, France. Google ScholarGoogle ScholarDigital LibraryDigital Library
  151. B. Thom. 2000. BoB: An interactive improvisational music companion. In Proceedings of the 4th International Conference on Autonomous Agents. ACM, 309--316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  152. A. Tidemann and Y. Demiris. 2008. A drum machine that learns to groove. In KI 2008: Advances in Artificial Intelligence. Springer, 144--151. Google ScholarGoogle ScholarCross RefCross Ref
  153. P. M. Todd. 1989. A connectionist approach to algorithmic composition. Comput. Music J. (1989), 27--43. Google ScholarGoogle ScholarCross RefCross Ref
  154. P. Toiviainen. 1995. Modeling the target-note technique of bebop-style jazz improvisation: An artificial neural network approach. Music Perception (1995), 399--413.Google ScholarGoogle Scholar
  155. N. Tokui and H. Iba. 2000. Music composition with interactive evolutionary computation. In Proceedings of the 3rd International Conference on Generative Art, Vol. 17:2. 215--226.Google ScholarGoogle Scholar
  156. M. W. Towsey, A. R. Brown, S. K. Wright, and J. Diederich. 2001. Towards melodic extension using genetic algorithms. Edu. Technol. Soc. 4, 2 (2001), 54--65.Google ScholarGoogle Scholar
  157. C. P. Tsang and M. Aitken. 1999. Harmonizing music as a discipline of constraint logic programming. In Proceedings of the International Computer Music Conference.Google ScholarGoogle Scholar
  158. D. R. Tuohy and W. D. Potter. 2005. A genetic algorithm for the automatic generation of playable guitar tablature. In Proceedings of the International Computer Music Conference. 499--502. Google ScholarGoogle ScholarCross RefCross Ref
  159. P. N. Vassilakis. 2005. An improvisation on the middle-eastern mijwiz; Auditory roughness profiles and tension/release patterns. J. Acoust. Soc. Amer. 117, 4 (2005), 2476--2476. Google ScholarGoogle ScholarCross RefCross Ref
  160. Rodney Waschka II. 2007. Composing with genetic algorithms: GenDash. In Evolutionary Computer Music. Springer, 117--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  161. G. Weinberg and S. Driscoll. 2006. Toward robotic musicianship. Comput. Music J. 30, 4 (2006), 28--45.Google ScholarGoogle ScholarDigital LibraryDigital Library
  162. I. Xenakis. 1992. Formalized Music: Thought and Mathematics in Composition. Number 6. Pendragon Pr. Google ScholarGoogle ScholarCross RefCross Ref
  163. J. Yamato, J. Ohya, and K. Ishii. 1992. Recognizing human action in time-sequential images using hidden markov model. In Proceedings of the 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’92). IEEE, 379--385.Google ScholarGoogle Scholar
  164. L. Yi and J. Goldsmith. 2007. Automatic generation of four-part harmony. In Proceedings of the BMA, CEUR Workshop.Google ScholarGoogle Scholar
  165. R. B. Zajonc. 1968. Attitudinal effects of mere exposure.J. Personal. Soc. Psychol. 9, 2p2 (1968), 1--27.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A Functional Taxonomy of Music Generation Systems

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Computing Surveys
            ACM Computing Surveys  Volume 50, Issue 5
            September 2018
            573 pages
            ISSN:0360-0300
            EISSN:1557-7341
            DOI:10.1145/3145473
            • Editor:
            • Sartaj Sahni
            Issue’s Table of Contents

            Copyright © 2017 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 26 September 2017
            • Accepted: 1 June 2017
            • Revised: 1 March 2017
            • Received: 1 August 2016
            Published in csur Volume 50, Issue 5

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • survey
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader