skip to main content
10.1145/3071178.3071256acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Fitness-distance-ratio particle swarm optimization: stability analysis

Published:01 July 2017Publication History

ABSTRACT

At present the fitness-distance-ratio particle swarm optimizer (FDR-PSO) has undergone no form of theoretical stability analysis. This paper theoretically derives the conditions necessary for order-1 and order-2 stability under the well known stagnation assumption. Since it has been shown that particle stability has a meaningful impact on PSO's performance, it is important for PSO practitioners to know the actual criteria for particle stability. This paper validates its theoretical findings against an assumption free FDR-PSO algorithm. This empirical validation is necessary for a truly accurate representation of FDR-PSO's stability criteria.

Skip Supplemental Material Section

Supplemental Material

References

  1. K. Atkinson and W. Han. 2009. Theoretical Numerical Analysis: A Functional Analysis Framework. Springer, Heidelberg, Berlin.Google ScholarGoogle Scholar
  2. A. Banks, J. Vincent, and C. Anyakoha. 2007. A review of particle swarm optimization, part i: background and development. Natural Computing 6, 4 (2007), 467--484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. A. Banks, J. Vincent, and C. Anyakoha. 2008. review of particle swarm optimization, part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Natural Computing 7, 1 (2008), 109--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. T. Blackwell. 2012. A Study of Collapse in Bare Bones Particle Swarm Optimzation. IEEE Transactions on Evolutionary Computation 16, 3 (2012), 354--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M.R. Bonyadi and Z. Michalewicz. 2016. Particle swarm optimization for single objective continuous space problems: a review. Evolutionary Computation (2016), 1--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M.R. Bonyadi and Z. Michalewicz. 2016. Stability analysis of the particle swarm optimization without stagnation assumption. IEEE Transactions on Evolutionary Computation 20, 5 (2016), 814--819.Google ScholarGoogle ScholarCross RefCross Ref
  7. C.W. Cleghorn and A.P. Engelbrecht. 2014. A generalized theoretical deterministic particle swarm model. Swarm Intelligence 8, 1 (2014), 35--59.Google ScholarGoogle ScholarCross RefCross Ref
  8. C.W. Cleghorn and A.P. Engelbrecht. 2014. Particle Swarm Convergence: Standardized Analysis and Topological Influence. In Proceedings of International Swarm Intelligence Conference (ANTS), Swarm Intelligence. Springer International Publishing, Switzerland, 134--145.Google ScholarGoogle Scholar
  9. C.W. Cleghorn and A.P. Engelbrecht. 2015. Fully informed particle swarm optimizer: Convergence analysis. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ, 164--170.Google ScholarGoogle Scholar
  10. C.W. Cleghorn and A.P. Engelbrecht. 2015. Particle Swarm Variants: Standardized Convergence Analysis. Swarm Intelligence 9, 2--3 (2015), 177--203.Google ScholarGoogle ScholarCross RefCross Ref
  11. C.W. Cleghorn and A.P. Engelbrecht. 2016. Particle Swarm Optimizer: The Impact of Unstable Particles on Performance. In Proceedings of the IEEE Symposium Series on Swarm Intelligence. IEEE Press, Piscataway, NJ, 1--7.Google ScholarGoogle Scholar
  12. C.W. Cleghorn and A.P. Engelbrecht. 2016. Unified Particle Swarm Optimizer: Convergence Analysis. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ, 448--454.Google ScholarGoogle Scholar
  13. M. Clerc. 1999. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 3. IEEE Press, Piscataway, NJ, USA, 1951--1957.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. Clerc and J. Kennedy. 2002. The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6, 1 (2002), 58--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A.P. Engelbrecht. 2013. Particle Swarm Optimization: Global Best or Local Best?. In Proceedings of the 1st BRICS Countries Congress on Computational Intelligence. IEEE Press, Piscataway, NJ, 124--135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A.P. Engelbrecht. 2013. Roaming Behavior of Unconstrained Particles. In Proceedings of the 1st BRICS Countries Congress on Computational Intelligence. IEEE Press, Piscataway, NJ, 104--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. E. García-Gonzalo and J.L. Fernández-Martinez. 2014. Convergence and stochastic stability analysis of particle swarm optimization variants with generic parameter distributions. Appl. Math. Comput. 249 (2014), 286--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. V. Gazi. 2012. Stochastic Stability Analysis of the Particle Dynamics in the PSO Algorithm. In Proceedings of the IEEE International Symposium on Intelligent Control. IEEE Press, Piscataway, 708--713.Google ScholarGoogle ScholarCross RefCross Ref
  19. K.H. Harrison, A.P. Engelbrecht, and B.M. Ombuki-Berman. 2016. The sad state of self-adaptive particle swarm optimizers. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ, 431--439.Google ScholarGoogle Scholar
  20. X. Hu, Y. Shi, and R. Eberhart. 2004. Recent advances in particle swarm.. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ, 90--97.Google ScholarGoogle Scholar
  21. M. Jiang, Y.P. Luo, and S.Y. Yang. 2007. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Inform. Process. Lett. 102, 1 (2007), 8--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. V. Kadirkamanathan, K. Selvarajah, and P.J. Fleming. 2006. Stability Analysis of the Particle Dynamics in Particle Swarm Optimizer. IEEE Transactions on Evolutionary Computation 10, 3 (2006), 245--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. J. Kennedy. 1999. Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 3. IEEE Press, Piscataway, NJ, 1931--1938.Google ScholarGoogle ScholarCross RefCross Ref
  24. J. Kennedy and R.C. Eberhart. 1995. Particle Swarm Optimization. In Proceedings of the IEEE International Joint Conference on Neural Networks. IEEE Press, Piscataway, NJ, 1942--1948.Google ScholarGoogle Scholar
  25. J. Kennedy and R. Mendes. 2002. Population Structure and Particle Performance. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ, 1671--1676. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Q. Liu. 2015. Order-2 Stability Analysis of Particle Swarm Optimization. Evolutionary Computation 23, 2 (2015), 187--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. E. Ozcan and C.K. Mohan. 1998. Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems through Artificial Neural Networks 8 (1998), 253--258.Google ScholarGoogle Scholar
  28. E. Ozcan and C.K. Mohan. 1999. Particle Swarm Optimization: Surfing the Waves. In Proceedings of the IEEE Congress on Evolutionary Computation, Vol. 3. IEEE Press, Piscataway, NJ, USA, 1939--1944.Google ScholarGoogle Scholar
  29. T. Peram, K. Veeramachaneni, and C.K Mohan. 2003. Fitness-Distance-Ratio Based Particle Swarm Optiniization. In Proceedings of the IEEE Swarm Intelligence Symposium. IEEE Press, Piscataway, NJ, 174--181.Google ScholarGoogle Scholar
  30. R. Poli. 2008. Analysis of the Publications on the Applications of Particle Swarm Optimisation. Journal of Artificial Evolution and Applications 2008 (2008), 1--10.Google ScholarGoogle Scholar
  31. R. Poli. 2009. Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Transactions on Evolutionary Computation 13, 4 (2009), 712--721. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. R. Poli and D. Broomhead. 2007. Exact analysis of the sampling distribution for the canonical particle swarm optimiser and its convergence during stagnation. In Proceedings of the Genetic and Evolutionary Computation Conference. ACM Press, New York, NY, 134--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. R. Poli, J. Kennedy, and T Blackwell. 2007. Particle swarm optimization. An overview. Swarm Intelligence 1, 1 (2007), 33--57.Google ScholarGoogle ScholarCross RefCross Ref
  34. Y. Shi and R.C. Eberhart. 1998. A Modified Particle Swarm Optimizer. In Proceedings of the IEEE Congress on Evolutionary Computation. IEEE Press, Piscataway, NJ, 69--73.Google ScholarGoogle Scholar
  35. I.C Trelea. 2003. The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Inform. Process. Lett. 85, 6 (2003), 317--325. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. F. Van den Bergh and A.P. Engelbrecht. 2006. A Study of Particle Swarm Optimization Particle Trajectories. Information Sciences 176, 8 (2006), 937--971. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fitness-distance-ratio particle swarm optimization: stability analysis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        GECCO '17: Proceedings of the Genetic and Evolutionary Computation Conference
        July 2017
        1427 pages
        ISBN:9781450349208
        DOI:10.1145/3071178

        Copyright © 2017 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 July 2017

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        GECCO '17 Paper Acceptance Rate178of462submissions,39%Overall Acceptance Rate1,669of4,410submissions,38%

        Upcoming Conference

        GECCO '24
        Genetic and Evolutionary Computation Conference
        July 14 - 18, 2024
        Melbourne , VIC , Australia

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader