skip to main content
research-article
Open Access

Fast approximations for boundary element based brittle fracture simulation

Published:11 July 2016Publication History
Skip Abstract Section

Abstract

We present a boundary element based method for fast simulation of brittle fracture. By introducing simplifying assumptions that allow us to quickly estimate stress intensities and opening displacements during crack propagation, we build a fracture algorithm where the cost of each time step scales linearly with the length of the crack-front.

The transition from a full boundary element method to our faster variant is possible at the beginning of any time step. This allows us to build a hybrid method, which uses the expensive but more accurate BEM while the number of degrees of freedom is low, and uses the fast method once that number exceeds a given threshold as the crack geometry becomes more complicated.

Furthermore, we integrate this fracture simulation with a standard rigid-body solver. Our rigid-body coupling solves a Neumann boundary value problem by carefully separating translational, rotational and deformational components of the collision forces and then applying a Tikhonov regularizer to the resulting linear system. We show that our method produces physically reasonable results in standard test cases and is capable of dealing with complex scenes faster than previous finite- or boundary element approaches.

Skip Supplemental Material Section

Supplemental Material

a104.mp4

References

  1. Aliabadi, M. 1997. Boundary element formulations in fracture mechanics. Applied Mechanics Reviews 50, 2, 83--96.Google ScholarGoogle ScholarCross RefCross Ref
  2. Baker, M., Zafar, N. B., Carlson, M., Coumans, E., Criswell, B., Harada, T., and Knight, P. 2011. Destruction and dynamics for film and game production. In ACM SIGGRAPH2011 Courses.Google ScholarGoogle Scholar
  3. Bao, Z., Hong, J.-M., Teran, J., and Fedkiw, R. 2007. Fracturing rigid materials. IEEE TVCG 13, 370--378. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bender, J., Erleben, K., Trinkle, J., and Coumans, E. 2012. Interactive simulation of rigid body dynamics in computer graphics. In EUROGRAPHICS 2012 State of the Art Reports.Google ScholarGoogle Scholar
  5. Chadwick, J. N., Zheng, C., and James, D. L. 2012. Precomputed acceleration noise for improved rigid-body sound. ACM Trans. Graph. 31, 4, 103:1--103:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chen, Z., Yao, M., Feng, R., and Wang, H. 2014. Physics-inspired adaptive fracture refinement. ACM Trans. Graph. 33, 113:1--113:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Coumans, E. 2015. Bullet physics simulation. In ACM SIGGRAPH 2015 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Elek, P., and Jaramaz, S. 2008. Fragment size distribution in dynamic fragmentation: Geometric probability approach. FME Transactions 36, 2, 59--65.Google ScholarGoogle Scholar
  9. Frangi, A., Novati, G., Springhetti, R., and Rovizzi, M. 2002. 3D fracture analysis by the symmetric Galerkin BEM. Computational Mechanics 28, 3-4, 220--232.Google ScholarGoogle ScholarCross RefCross Ref
  10. Glondu, L., Muguercia, L., Marchal, M., Bosch, C., Rushmeier, H., Dumont, G., and Drettakis, G. 2012. Example-based fractured appearance. Computer Graphics Forum 31, 4, 1547--1556. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Glondu, L., Marchal, M., and Dumont, G. 2013. Realtime simulation of brittle fracture using modal analysis. IEEE TVCG 19, 201--209. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gravouil, A., Moës, N., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets -- part II: level set update. INT J NUMER METH ENG 53, 11, 2569--2586.Google ScholarGoogle ScholarCross RefCross Ref
  13. Gross, D., and Seelig, T. 2011. Fracture Mechanics, 2nd ed. Springer.Google ScholarGoogle Scholar
  14. Hahn, D., and Wojtan, C. 2015. High-resolution brittle fracture simulation with boundary elements. ACM Trans. Graph. 34, 4, 151:1--151:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hertz, H. 1881. Über die Berührung fester elastischer Körper. J. reine und angewandte Math. 92, 156--171.Google ScholarGoogle Scholar
  16. Hirota, K., Tanoue, Y., and Kaneko, T. 2000. Simulation of three-dimensional cracks. The Visual Computer 16, 371--378.Google ScholarGoogle ScholarCross RefCross Ref
  17. Iben, H. N., and O'Brien, J. F. 2006. Generating surface crack patterns. In Proc. ACM SIGGRAPH/Eurographics SCA 2006, 177--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ingraffea, A. R., and Wawrzynek, P. A. 2003. Finite Element Methods for Linear Elastic Fracture Mechanics, Chapter 3.1 in Comprehensive Structural Integrity. Elsevier Science Ltd.Google ScholarGoogle Scholar
  19. James, D. L., and Pai, D. K. 1999. Artdefo: Accurate real time deformable objects. In SIGGRAPH 99, Annual Conference Series, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kaufmann, P., Martin, S., Botsch, M., Grinspun, E., and Gross, M. 2009. Enrichment textures for detailed cutting of shells. ACM Trans. Graph. 28, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Keeler, T., and Bridson, R. 2014. Ocean waves animation using boundary integral equations and explicit mesh tracking. In Proc. ACM SIGGRAPH/Eurographics SCA 2014, 11--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kielhorn, L. 2009. A time-domain symmetric Galerkin BEM for viscoelastodynamics. Verl. der Techn. Univ. Graz.Google ScholarGoogle Scholar
  23. Koschier, D., Lipponer, S., and Bender, J. 2014. Adaptive tetrahedral meshes for brittle fracture simulation. In Proc. ACM SIGGRAPH/Eurographics SCA 2014, 57--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Levine, J. A., Bargteil, A. W., Corsi, C., Tessendorf, J., and Geist, R. 2014. A peridynamic perspective on spring-mass fracture. In Proc. ACM SIGGRAPH/Eurographics SCA 2014, 47--55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mamou, K., and Ghorbel, F. 2009. A simple and efficient approach for 3D mesh approximate convex decomposition. In 16th IEEE Int. Conf. Image Processing (ICIP), 3501--3504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mayboroda, S., and Mitrea, M. 2006. Integral Methods in Science and Engineering: Theoretical and Practical Aspects. Birkhäuser Boston, ch. The Poisson Problem for the Lamé System on Low-dimensional Lipschitz Domains, 137--160.Google ScholarGoogle Scholar
  27. Messner, M., and Schanz, M. 2010. An accelerated symmetric time-domain boundary element formulation for elasticity. Engineering Analysis with Boundary Elements 34, 11, 944--955.Google ScholarGoogle ScholarCross RefCross Ref
  28. Moës, N., Gravouil, A., and Belytschko, T. 2002. Non-planar 3D crack growth by the extended finite element and level sets -- part I: mechanical model. INT J NUMER METH ENG 53, 11, 2549--2568.Google ScholarGoogle ScholarCross RefCross Ref
  29. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Mousavi, S. E., Grinspun, E., and Sukumar, N. 2011. Higher-order extended finite elements with harmonic enrichment functions for complex crack problems. INT J NUMER METH ENG 86, 4-5, 560--574.Google ScholarGoogle ScholarCross RefCross Ref
  31. Müller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Proc. real-time simulation of deformation and fracture of stiff materials. In Eurographic Workshop on Computer Animation and Simulation, 113--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Müller, M., Chentanez, N., and Kim, T.-Y. 2013. Real time dynamic fracture with volumetric approximate convex decompositions. ACM Trans. Graph. 32, 115:1--115:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Norton, A., Turk, G., Bacon, B., Gerth, J., and Sweeney, P. 1991. Animation of fracture by physical modeling. The Visual Computer 7, 210--219. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In SIGGRAPH 99, Annual Conference Series, 137--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Parker, E. G., and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Proc. ACM SIGGRAPH/Eurographics SCA 2009, 165--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Patricio, M., and Mattheij, R. 2007. Crack propagation analysis. CASA-report 0723.Google ScholarGoogle Scholar
  38. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Popov, V. 2010. Contact Mechanics and Friction. Physical Principles and Applications. Springer.Google ScholarGoogle Scholar
  40. Schvartzman, S. C., and Otaduy, M. A. 2014. Fracture animation based on high-dimensional voronoi diagrams. In Proc. 18th ACM SIGGRAPH i3D '14, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Smith, J., Witkin, A., and Baraff, D. 2001. Fast and controllable simulation of the shattering of brittle objects. Computer Graphics Forum 20, 81--91.Google ScholarGoogle ScholarCross RefCross Ref
  42. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A. 2013. A material point method for snow simulation. ACM Trans. Graph. 32, 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Su, J., Schroeder, C., and Fedkiw, R. 2009. Energy stability and fracture for frame rate rigid body simulations. In Proc. ACM SIGGRAPH/Eurographics SCA 2009, 155--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscolelasticity, plasticity, fracture. SIGGRAPH Comput. Graph. 22, 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 69:1--69:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zhu, Y., Bridson, R., and Greif, C. 2015. Simulating rigid body fracture with surface meshes. ACM Trans. Graph. 34, 4, 150:1--150:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fast approximations for boundary element based brittle fracture simulation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 35, Issue 4
        July 2016
        1396 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2897824
        Issue’s Table of Contents

        Copyright © 2016 Owner/Author

        This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 11 July 2016
        Published in tog Volume 35, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader