skip to main content
10.1145/2834050.2834096acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article

High Speed Networks Need Proactive Congestion Control

Published:16 November 2015Publication History

ABSTRACT

As datacenter speeds scale to 100 Gb/s and beyond, traditional congestion control algorithms like TCP and RCP converge slowly to steady sending rates, which leads to poorer and less predictable user performance. These reactive algorithms use congestion signals to perform gradient descent to approach ideal sending rates, causing poor convergence times. In this paper, we propose a proactive congestion control algorithm called PERC, which explicitly computes rates independently of congestion signals in a decentralized fashion. Inspired by message-passing algorithms with traction in other fields (e.g., modern Low Density Parity Check decoding algorithms), PERC improves convergence times by a factor of 7 compared to reactive explicit rate control protocols such as RCP. This fast convergence reduces tail flow completion time (FCT) significantly in high speed networks; for example, simulations of a realistic workloads in a 100 Gb/s network show that PERC achieves up to 4x lower 99th percentile FCT compared to RCP.

Skip Supplemental Material Section

Supplemental Material

a14.mp4

mp4

901.7 MB

References

  1. M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In Proc. ACM SIGCOMM 2010 Conference, pages 63--74, Aug 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is more: trading a little bandwidth for ultra-low latency in the data center. In Proc. USENIX Conference on Networked Systems Design and Implementation (NSDI 2012), April 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pFabric: minimal near-optimal datacenter transport. In Proc. ACM SIGCOMM 2013 Conference, pages 435--446, Aug 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. H. Ballani, P. Costa, T. Karagiannis, and A. Rowstrong. Towards predictable datacenter networks. In Proc. ACM SIGCOMM 2011 Conference, pages 242--253, Aug 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. D. Bertsekas and R. Gallager. Data Networks, pages 524--527. Prentice Hall, 2nd edition, 1992.Google ScholarGoogle Scholar
  6. P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4: Programming protocol-independent packet processors. SIGCOMM Computer Communication Review, pages 87--95, Jul 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamorphosis: fast programmable match-action processing in hardware for SDN. In Proc. ACM SIGCOMM 2013 Conference, pages 99--110, Aug 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. A. Charny, D. D. Clark, and R. Jain. Congestion control with explicit rate indication. In Proc. IEEE International Conference on Communications (ICC), 1995.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. Chiang, S. H. Low, J. C. Doyle, et al. Layering as optimization decomposition: A mathematical theory of network architectures. Proceedings of the IEEE, 95(1):255--312, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  10. M. Chowdhury, Y. Zhong, and I. Stoica. Efficient coflow scheduling with varys. In Proc. ACM SIGCOMM 2014 Conference, pages 443--454, Aug 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron. Decentralized task-aware scheduling for data center networks. In Proc. ACM SIGCOMM 2014 Conference, pages 431--442, Aug 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. N. Dukkipati. Rate Control Protocol (RCP): Congestion control to make flows complete quickly. PhD thesis, Citeseer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong. A control theoretic analysis of red. In Proc. IEEE INFOCOM, pages 1510--1519, Apr 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly with preemptive scheduling. In Proc. ACM SIGCOMM 2012 Conference, pages 127--138, Aug 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. T. Issariyakul and E. Hossain. Introduction to Network Simulator NS2. Springer Publishing Company, 1st edition, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. V. Jacobson and M. J. Karels. Congestion avoidance and control. In Proc. ACM SIGCOMM 1988 conference, Aug. 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg, and C. Kim. EyeQ: Practical network performance isolation at the edge. In Proc. USENIX Conference on Networked Systems Design and Implementation (NSDI 2013), Apr 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. D. Katabi, M. Handley, and C. Rohrs. Congestion control for high bandwidth-delay product networks. In Proc. ACM SIGCOMM 2002 Conference, Aug 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communication networks: shadow prices, proportional fairness, and stability. In The Journal of the Operational Research Society, pages 237--252, Mar 1998.Google ScholarGoogle Scholar
  20. S. H. Low and L. L. H. Andrew. Understanding xcp: equilibrium and fairness. In Proc. IEEE INFOCOM, pages 1025--1036, Mar 2005.Google ScholarGoogle ScholarCross RefCross Ref
  21. D. J. MacKay. Information theory, inference and learning algorithms. Cambridge University Press, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: a centralized "zero-queue" datacenter network. In Proc. ACM SIGCOMM 2014 Conference, pages 307--318, Aug 2014. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. J. Richardson and R. L. Urbanke. The capacity of low-density parity-check codes under message-passing decoding. In Proc. IEEE Transactions on Information Theory, pages 599--618, Feb 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. R. Srikant. The mathematics of Internet congestion control. Springer Science & Business Media, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-aware datacenter TCP (D2TCP). In Proc. ACM SIGCOMM 2012 Conference, pages 115--126, Aug 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Varga and R. Hornig. An overview of the OMNeT++ simulation environment. In Proc. SIMUTools, Mar 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late: meeting deadlines in datacenter networks. In Proc. ACM SIGCOMM 2011 Conference, pages 50--61, Aug 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. High Speed Networks Need Proactive Congestion Control

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      HotNets-XIV: Proceedings of the 14th ACM Workshop on Hot Topics in Networks
      November 2015
      189 pages
      ISBN:9781450340472
      DOI:10.1145/2834050

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 16 November 2015

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate110of460submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader