skip to main content
10.1145/2815782.2815819acmotherconferencesArticle/Chapter ViewAbstractPublication PageshtConference Proceedingsconference-collections
research-article

Toward a framework for ontology modularity

Authors Info & Claims
Published:28 September 2015Publication History

ABSTRACT

Dividing up data or information into smaller components---modules---is a well-know approach to a range of problems, such as scalability and model comprehension. The use of modules in ontologies at the knowledge layer is receiving increased attention, and a plethora of approaches, algorithms, and tools exist, which, however, yield only very limited success. This is mainly because wrong combinations of techniques are being used. To solve this issue, we examine the modules' use-cases, types, techniques, and properties from the literature. This is used to create a framework for ontology modularity, such that a user with a certain use case will know the type of modules needed, and therewith then also the appropriate technique to realise it and what properties the resultant modules will have. This framework is then evaluated with three case studies, begin the QUDT, FMA, and OpenGalen ontologies.

References

  1. E. Antezana, M. Egaña, W. Blondè, A. Illarramendi, I. n. Bilbao, B. De Baets, R. Stevens, V. Mironov, and M. Kuiper. The cell cycle ontology: an application ontology for the representation and integrated analysis of the cell cycle process. Genome Biology, 10(5):R58, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  2. K. T. Belloze, D. I. S. B. Monteiro, T. F. Lima, F. P. S. Jr., and M. C. R. Cavalcanti. An evaluation of annotation tools for biomedical texts. In Joint V Seminar on Ontology Research in Brazil and VII International Workshop on Metamodels, Ontologies and Semantic Technologies, volume 938 of CEUR Workshop Proc. CEUR-WS.org, 2012. Recife, Brazil, September 19--21.Google ScholarGoogle Scholar
  3. S. Borgo. Goals of modularity: A voice from the foundational viewpoint. In O. Kutz and T. Schneider, editors, Fifth International Workshop on Modular Ontologies (WOMO'11), volume 230 of Frontiers in Artificial Intelligence and Applications, pages 1--6. IOS Press, 2011. Ljubljana, Slovenia, August.Google ScholarGoogle Scholar
  4. L. J. Campbell, T. A. Halpin, and H. A. Proper. Conceptual schemas with abstractions: Making flat conceptual schemas more comprehensible. Data Knowledge Engineering, 20(1):39--85, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular Reuse of Ontologies: Theory and Practice. Journal of Artificial Intelligence Research, 31:273--318, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. d'Aquin, A. Schlicht, H. Stuckenschmidt, and M. Sabou. Ontology modularization for knowledge selection: Experiments and evaluations. In R. Wagner, N. Revell, and G. Pernul, editors, 18th International Conference on Database and Expert Systems Applications (DEXA'07), volume 4653 of LNCS, pages 874--883. Springer, 2007. Regensburg, Germany, September 3--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. M. d'Aquin, A. Schlicht, H. Stuckenschmidt, and M. Sabou. Criteria and evaluation for ontology modularization techniques. In H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors, Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, volume 5445 of LNCS, pages 67--89. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. Del Vescovo. The modular structure of an ontology: Atomic decomposition towards applications. In R. Rosati, S. Rudolph, and M. Zakharyaschev, editors, 24th International Workshop on Description Logics (DL 2011), volume 745 of CEUR Workshop Proc. CEUR-WS.org, 2011. Barcelona, Spain, July 13--16.Google ScholarGoogle Scholar
  9. C. Del Vescovo, D. Gessler, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and A. Winget. Decomposition and Modular Structure of BioPortal Ontologies. In 10th International Semantic Web Conference (ISWC'11), volume 7031 of LNCS, pages 130--145. Springer, 2011. October 23--27, Bonn, Germany. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. Doran, I. Palmisano, and V. A. M. Tamma. SOMET: algorithm and tool for SPARQL based ontology module extraction. In Third Workshop on Ontologies: Reasoning and Modularity (WoMO'08), volume 348 of CEUR Workshop Proc. CEUR-WS.org, 2008. Tenerife, Spain, June 2.Google ScholarGoogle Scholar
  11. A. C. Garcia, L. Tiveron, C. Justel, and M. C. Cavalcanti. Applying graph partitioning techniques to modularize large ontologies. In Joint V Seminar on Ontology Research in Brazil and VII International Workshop on Metamodels, Ontologies and Semantic Technologies, volume 938 of CEUR Workshop Proc, pages 72--83. CEUR-WS.org, 2012. Recife, Brazil, September 19--21.Google ScholarGoogle Scholar
  12. F. Giunchiglia, A. Villafiorita, and T. Walsh. Theories of abstraction. AI Communication, 10(3,4):167--176, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. J. Golbeck, G. Fragoso, F. W. Hartel, J. A. Hendler, J. Oberthaler, and B. Parsia. The national cancer institute's thesaurus and ontology. Journal of Semantic Web, 1(1):75--80, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  14. R. Hodgson and P. J. Keller. QUDT-quantities, units, dimensions and data types in OWL and XML. Online (September 2011) http://www.qudt.org, 2011.Google ScholarGoogle Scholar
  15. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, and J. A. Hendler. Swoop: A Web Ontology Editing Browser. Journal of Web Semantics, 4(2):144--153, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Y. Kazakov, M. Krötzsch, and F. Simancik. ELK reasoner: Architecture and evaluation. In 1st International Workshop on OWL Reasoner Evaluation (ORE-2012), volume 858 of CEUR Workshop Proc. CEUR-WS.org, 2012. Manchester, UK, July 1st.Google ScholarGoogle Scholar
  17. C. M. Keet. Using abstractions to facilitate management of large ORM models and ontologies. In R. Meersman, Z. Tari, P. Herrero, G. Méndez, L. Cavedon, D. B. Martin, A. Hinze, G. Buchanan, M. S. Pérez, V. Robles, J. Humble, A. Albani, J. L. G. Dietz, H. Panetto, M. Scannapieco, T. A. Halpin, P. Spyns, J. M. Zaha, E. Zimányi, E. Stefanakis, T. S. Dillon, L. Feng, M. Jarrar, J. Lehmann, A. de Moor, E. Duval, and L. Aroyo, editors, OTM Workshops, volume 3762 of LNCS, pages 603--612. Springer, 2005. Agia Napa, Cyprus, October 31 - November 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. C. M. Keet. Enhancing comprehension of ontologies and conceptual models through abstractions. In 10th Congress of the Italian Association for Artificial Intelligence (AI*IA'07), volume 4733 of LNCS, pages 813--821. Springer, 2007. Rome, Italy, September 10--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. C. M. Keet, C. d'Amato, Z. Khan, and A. Lawrynowicz. Exploring reasoning with the DMOP ontology. In 3rd Workshop on Ontology Reasoner Evaluation (ORE'14), CEUR Workshop Proc, pages 64--70. CEUR-WS.org, 2014. July 1, Vienna, Austria.Google ScholarGoogle Scholar
  20. Z. Khan and C. M. Keet. The foundational ontology library ROMULUS. In 3rd International Conference on Model & Data Engineering (MEDI'13), volume 8216 of LNCS. Springer, 2013. Sep 25-27, Amantea, Calabria, Italy.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. S. D. Larson, L. L. Fong, A. Gupta, C. Condit, W. J. Bug, and M. E. Martone. A Formal Ontology of Subcellular Neuroanatomy. Front Neuroinformatics, 1:3, 2007.Google ScholarGoogle Scholar
  22. N. F. Noy and M. A. Musen. Traversing ontologies to extract views. In Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, volume 5445 of LNCS, pages 245--260. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. C. Parent and S. Spaccapietra. An Overview of Modularity. In Modular Ontologies, volume 5445 of LNCS, pages 5--23. Springer Berlin Heidelberg, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Pathak, T. M. Johnson, and C. G. Chute. Survey of modular ontology techniques and their applications in the biomedical domain. Integrated Computer-Aided Engineering, 16(3):225--242, 2009. Google ScholarGoogle ScholarCross RefCross Ref
  25. H. Paulheim. On applying matching tools to large-scale ontologies. In 3rd International Workshop on Ontology Matching (OM'08), volume 431 of CEUR Workshop Proc. CEUR-WS.org, 2008. Karlsruhe, Germany, October 26.Google ScholarGoogle Scholar
  26. A. L. Rector, J. Rogers, P. E. Zanstra, and E. J. van der Haring. OpenGALEN: Open source medical terminology and tools. In American Medical Informatics Association Annual Symposium (AMIA'03). AMIA, 2003. Washington, DC, USA, November 8--12.Google ScholarGoogle Scholar
  27. C. Rosse and J. L. V. Mejino. A reference ontology for biomedical informatics: the Foundational Model of A|atomy. Journal of Biomedical Informatics, 36(6):478--500, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. A. Schlicht and H. Stuckenschmidt. Towards structural criteria for ontology modularization. In P. Haase, V. Honavar, O. Kutz, Y. Sure, and A. Tamilin, editors, 1st International Workshop on Modular Ontologies (WoMO'06), volume 232 of CEUR Workshop Proc. CEUR-WS.org, 2006. November 5, Athens, Georgia, USA.Google ScholarGoogle Scholar
  29. A. Schlicht and H. Stuckenschmidt. A flexible partitioning tool for large ontologies. In International Conference on Web Intelligence (WI'08), pages 482--488. IEEE Computer Society, 2008. 9--12 December, Sydney, NSW, Australia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. J. Seidenberg. Web ontology segmentation: Extraction, transformation, evaluation. In Modular Ontologies: Concepts, Theories and Techniques for Knowledge Modularization, volume 5445 of LNCS, pages 211--243. Springer, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. V. Turlapati and S. Puligundla. Efficient module extraction for large ontologies. In Knowledge Engineering and the Semantic Web, volume 394 of Communications in Computer and Information Science, pages 162--176. Springer Berlin Heidelberg, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  32. M. Vigo, C. Jay, and R. Stevens. Design insights for the next wave ontology authoring tools. In Conference on Human Factors in Computing Systems (CHI'14), pages 1555--1558. ACM, 2014. Toronto, ON, Canada, April 26 - May 01. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. P. L. Whetzel, N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache, and M. A. Musen. BioPortal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucleic Acids Research, 39(Web-Server-Issue), 2011.Google ScholarGoogle Scholar

Index Terms

  1. Toward a framework for ontology modularity

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        SAICSIT '15: Proceedings of the 2015 Annual Research Conference on South African Institute of Computer Scientists and Information Technologists
        September 2015
        423 pages

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 28 September 2015

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        SAICSIT '15 Paper Acceptance Rate43of119submissions,36%Overall Acceptance Rate187of439submissions,43%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader