skip to main content
research-article

Spintronic PUFs for Security, Trust, and Authentication

Published:25 April 2016Publication History
Skip Abstract Section

Abstract

We propose spintronic physically unclonable functions (PUFs) to exploit security-specific properties of domain wall memory (DWM) for security, trust, and authentication. We note that the nonlinear dynamics of domain walls (DWs) in the physical magnetic system is an untapped source of entropy that can be leveraged for hardware security. The spatial and temporal randomness in the physical system is employed in conjunction with microscopic and macroscopic properties such as stochastic DW motion, stochastic pinning/depinning, and serial access to realize novel relay-PUF and memory-PUF designs. The proposed PUFs show promising results (∼50% interdie Hamming distance (HD) and 10% to 20% intradie HD) in terms of randomness, stability, and resistance to attacks. We have investigated noninvasive attacks, such as machine learning and magnetic field attack, and have assessed the PUFs resilience.

References

  1. M. Abramovici and P. Bradley. 2009. Integrated circuit security: New threats and solutions. In Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security and Information Intelligence Challenges and Strategies. ACM, 55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. K. N. Alekseev, G. P. Berman, V. I. Tsifrinovich, and A. M. Frishman. 1992. Dynamical chaos in magnetic systems. Soviet Physics Uspekhi 35, 7, 572.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. J. Annunziata, M. C. Gaidis, L. Thomas, C. W. Chien, C. C. Hung, P. Chevalier, et al. 2011. Racetrack memory cell array with integrated magnetic tunnel junction readout. In 2011 International Electron Devices Meeting.Google ScholarGoogle ScholarCross RefCross Ref
  4. ASU. 2007. Predictive Technology Model. Retrieved from http://ptm.asu.edu/.Google ScholarGoogle Scholar
  5. Supriyo Bandyopadhyay and Marc Cahay. 2008. Introduction to Spintronics. CRC Press, Boca Raton, FL.Google ScholarGoogle Scholar
  6. B. Behin-Aein, D. Datta, S. Salahuddin, and S. Datta. 2010. Proposal for an all-spin logic device with built-in memory. Nature Nanotechnology 5, 4, 266--270.Google ScholarGoogle ScholarCross RefCross Ref
  7. L. Berger. 1984. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. Journal of Applied Physics 55, 6, 1954--1956.Google ScholarGoogle ScholarCross RefCross Ref
  8. M. J. Donahue and D. G. Porter. 1999. OOMMF User's Guide. US Department of Commerce, Technology Administration, National Institute of Standards and Technology.Google ScholarGoogle Scholar
  9. A. Driskill-Smith. 2010. Latest advances and future prospects of STT-RAM. In Proceedings of the Non-volatile Memories Workshop.Google ScholarGoogle Scholar
  10. R. A. Duine, A. S. Núñez, and A. H. MacDonald. 2007. Thermally assisted current-driven domain-wall motion. Physical Review Letters 98, 5, 056605.Google ScholarGoogle ScholarCross RefCross Ref
  11. P. P. Freitas and L. Berger. 1985. Observation of s-d exchange force between domain walls and electric current in very thin permalloy films. Journal of Applied Physics 57, 4, 1266--1269.Google ScholarGoogle ScholarCross RefCross Ref
  12. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11, 1, 10--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Masamitsu Hayashi. 2006. Current Driven Dynamics of Magnetic Domain Walls in Permalloy Nanowires. PhD dissertation, Stanford University.Google ScholarGoogle Scholar
  14. D. G. Hermann and J. P. Nguenang. 2013. Chaos Appearance during Domain Wall Motion under Electronic Transfer in Nanomagnets.Google ScholarGoogle Scholar
  15. D. E. Holcomb, W. P. Burleson, and K. Fu. 2009. Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Transactions on Computers 58, 9, 1198--1210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Iyengar, K. Ramclam, and S. Ghosh. 2014. DWM-PUF: A low-overhead, memory-based security primitive. In Proceedings of the 2014 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST). IEEE, 154--159.Google ScholarGoogle Scholar
  17. A. Iyengar, S. Ghosh, and K. Ramclam. 2015. Domain wall magnets for embedded memory and hardware security. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 5, 1 (2015), 40--50.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Jang, J. Park, S. Ghosh, and S. Bhunia. 2015. Self-correcting STTRAM under magnetic field attacks. In 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Jamali, K. J. Lee, and H. Yang. 2012. Metastable magnetic domain wall dynamics. New Journal of Physics 14, 3, 033010.Google ScholarGoogle ScholarCross RefCross Ref
  20. B. Jun and P. Kocher. 1999. The Intel Random Number Generator. Cryptography Research Inc. White Paper.Google ScholarGoogle Scholar
  21. A. Maiti, J. Casarona, L. McHale, and P. Schaumont. 2010. A large scale characterization of RO-PUF. In Proceedings of the 2010 IEEE International Symposium on Hardware-Oriented Security and Trust (HOST). IEEE, 94--99.Google ScholarGoogle Scholar
  22. R. Nebashi, N. Sakimura, Y. Tsuji, S. Fukami, H. Honjo, S. Saito, et al. 2011. A content addressable memory using magnetic domain wall motion cells. In Proceedings of the 2011 Symposium on VLSI Circuits (VLSIC). IEEE, 300--301.Google ScholarGoogle Scholar
  23. D. Nikonov and G. Bourianoff. 2006. Taxonomy of spintronics (a zoo of devices). Retrieved from http://nanohub.org/resources/1940.Google ScholarGoogle Scholar
  24. H. Okuno. 1997. Chaos and energy loss of nonlinear domain wall motion. Journal of Applied Physics 81, 8, 5233--5235.Google ScholarGoogle ScholarCross RefCross Ref
  25. E. Ott. 2002. Chaos in Dynamical Systems. Cambridge University Press.Google ScholarGoogle Scholar
  26. E. Oztiirk, G. Hammouri, and B. Sunar. 2008. (March). Towards robust low cost authentication for pervasive devices. In Proceedings of the 6th Annual IEEE International Conference on Pervasive Computing and Communications (PerCom’08). IEEE, 170--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. R. Pappu. 2001. Physical One-Way Functions. PhD thesis, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  28. S. S. Parkin, M. Hayashi, and L. Thomas. 2008. Magnetic domain-wall racetrack memory. Science 320, 5873, 190--194.Google ScholarGoogle Scholar
  29. J. Rajendran, R. Karri, J. B. Wendt, M. Potkonjak, N. R. McDonald, G. S. Rose, and B. T. Wysocki. 2012. Nanoelectronic solutions for hardware security. IACR Cryptology Eprint Archive 2012, 575.Google ScholarGoogle Scholar
  30. G. S. Rose, D. Kudithipudi, G. Khedkar, N. McDonald, B. Wysocki, and L. K. Yan. 2014. Nanoelectronics and hardware security. In Network Science and Cybersecurity. Springer, New York, 105--123.Google ScholarGoogle Scholar
  31. M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri. 2013. (November). Hardware security: Threat models and metrics. In Proceedings of the International Conference on Computer-Aided Design. IEEE Press, 819--823. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Samsung. 2013. SGMI Research Themes & Subjects. Online: http://www.samsung.com/global/business/semiconductor/html/news-events/file/SGMI_Proposal_Guide_and_Format_R1.pdf.Google ScholarGoogle Scholar
  33. S. Srinivasan. 2012. All Spin Logic: Modeling Multi-Magnet Networks Interacting Via Spin Currents. PhD dissertation, Purdue University.Google ScholarGoogle Scholar
  34. T. Tanamoto, N. Shimomura, S. Ikegawa, M. Matsumoto, S. Fujita, and H. Yoda. 2011. High-speed magnetoresistive random-access memory random number generator using error-correcting code. Japanese Journal of Applied Physics 50, 4S, 04DM01.Google ScholarGoogle ScholarCross RefCross Ref
  35. A. Thiaville and Y. Nakatani. 2006. Domain-wall dynamics in nanowiresand nanostrips. In Spin Dynamics in Confined Magnetic Structures III. Springer, Berlin, 161--205.Google ScholarGoogle Scholar
  36. P. Tuyls, G. J. Schrijen, B. Škorić, J. Van Geloven, N. Verhaegh, and R. Wolters. 2006. Read-proof hardware from protective coatings. In Cryptographic Hardware and Embedded Systems (CHES’06). Springer, Berlin, 369--383. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. S. X. Wang and A. M. Taratorin. 1999. Magnetic Information Storage Technology: A Volume in the Electromagnetism Series. Academic Press.Google ScholarGoogle Scholar
  38. Y. Wang, W. K. Yu, S. Wu, G. Malysa, G. E. Suh, and E. C. Kan. 2012. Flash memory for ubiquitous hardware security functions: True random number generation and device fingerprints. In Proceedings of the 2012 IEEE Symposium on Security and Privacy (SP). IEEE, 33--47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, et al. 2001. Spintronics: A spin-based electronics vision for the future. Science 294, 5546, 1488--1495.Google ScholarGoogle Scholar
  40. S. H. Yang, K. S. Ryu, and S. Parkin. 2015. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nature Nanotechnology 10, 3 (2015), 221--226.Google ScholarGoogle ScholarCross RefCross Ref
  41. J. Zhang, P. M. Levy, S. Zhang, and V. Antropov. 2004. Identification of transverse spin currents in noncollinear magnetic structures. Physical Review Letters 93, 25, 256602.Google ScholarGoogle ScholarCross RefCross Ref
  42. Y. Zheng, A. R. Krishna, and S. Bhunia. 2013. (January). ScanPUF: Robust ultralow-overhead PUF using scan chain. In Proceedings of the 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 626--631.Google ScholarGoogle Scholar
  43. I. Žutić, J. Fabian, and S. D. Sarma. 2004. Spintronics: Fundamentals and applications. Reviews of Modern Physics, 76, 2, 323.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Spintronic PUFs for Security, Trust, and Authentication

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Journal on Emerging Technologies in Computing Systems
        ACM Journal on Emerging Technologies in Computing Systems  Volume 13, Issue 1
        Special Issue on Secure and Trustworthy Computing
        January 2017
        208 pages
        ISSN:1550-4832
        EISSN:1550-4840
        DOI:10.1145/2917757
        • Editor:
        • Yuan Xie
        Issue’s Table of Contents

        Copyright © 2016 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 25 April 2016
        • Accepted: 1 July 2015
        • Revised: 1 May 2015
        • Received: 1 December 2014
        Published in jetc Volume 13, Issue 1

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader