skip to main content
research-article

Elastic textures for additive fabrication

Published:27 July 2015Publication History
Skip Abstract Section

Abstract

We introduce elastic textures: a set of parametric, tileable, printable, cubic patterns achieving a broad range of isotropic elastic material properties: the softest pattern is over a thousand times softer than the stiffest, and the Poisson's ratios range from below zero to nearly 0.5. Using a combinatorial search over topologies followed by shape optimization, we explore a wide space of truss-like, symmetric 3D patterns to obtain a small family. This pattern family can be printed without internal support structure on a single-material 3D printer and can be used to fabricate objects with prescribed mechanical behavior. The family can be extended easily to create anisotropic patterns with target orthotropic properties. We demonstrate that our elastic textures are able to achieve a user-supplied varying material property distribution. We also present a material optimization algorithm to choose material properties at each point within an object to best fit a target deformation under a prescribed scenario. We show that, by fabricating these spatially varying materials with elastic textures, the desired behavior is achieved.

Skip Supplemental Material Section

Supplemental Material

a135.mp4

mp4

17.6 MB

References

  1. Agarwal, S., Mierle, K., and Others. Ceres solver. http://ceres-solver.org.Google ScholarGoogle Scholar
  2. Allaire, G. 2002. Shape optimization by the homogenization method, vol. 146. Springer.Google ScholarGoogle Scholar
  3. Andreassen, E., Lazarov, B. S., and Sigmund, O. 2014. Design of manufacturable 3D extremal elastic microstructure. Mechanics of Materials 69, 1, 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  4. Avellaneda, M. 1987. Optimal bounds and microgeometries for elastic two-phase composites. SIAM Journal on Applied Mathematics 47, 6, 1216--1228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bendsøe, M. P., and Sigmund, O. 2003. Topology optimization: theory, methods and applications. Springer.Google ScholarGoogle Scholar
  6. Bendsøe, M. P. 1989. Optimal shape design as a material distribution problem. Structural optimization 1, 4, 193--202.Google ScholarGoogle Scholar
  7. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4 (July), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bückmann, T., Stenger, N., Kadic, M., Kaschke, J., Frölich, A., Kennerknecht, T., Eberl, C., Thiel, M., and Wegener, M. 2012. Tailored 3d mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Advanced Materials 24, 20, 2710--2714.Google ScholarGoogle ScholarCross RefCross Ref
  9. Cadman, J. E., Zhou, S., Chen, Y., and Li, Q. 2013. On design of multi-functional microstructural materials. Journal of Materials Science 48, 1, 51--66.Google ScholarGoogle ScholarCross RefCross Ref
  10. Chen, D., Levin, D. I., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2fab: a reducer-tuner model for translating specifications to 3d prints. ACM Transactions on Graphics (TOG) 32, 4, 135. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cherkaev, A. 2000. Variational methods for structural optimization, vol. 140. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  12. Chu, J., Engelbrecht, S., Graf, G., and Rosen, D. W. 2010. A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyping Journal 16, 4, 275--283.Google ScholarGoogle ScholarCross RefCross Ref
  13. Cignoni, P., Pietroni, N., Malomo, L., and Scopigno, R. 2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1 (Feb.), 11:1--11:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Cioranescu, D., and Donato, P. 1999. An introduction to homogenization. Oxford University Press.Google ScholarGoogle Scholar
  15. Grabovsky, Y., and Kohn, R. V. 1995. Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: the Vigdergauz microstructure. Journal of the Mechanics and Physics of Solids 43, 6, 949--972.Google ScholarGoogle ScholarCross RefCross Ref
  16. Greaves, G. N., Greer, A. L., Lakes, R. S., and Rouxel, T. 2011. Poisson's ratio and modern materials. Nature Materials 10, 11, 823--837.Google ScholarGoogle ScholarCross RefCross Ref
  17. Guest, J. K., and Prévost, J. H. 2006. Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability. International Journal of Solids and Structures 43, 2223, 7028--7047.Google ScholarGoogle ScholarCross RefCross Ref
  18. Hart, G. W. 2008. Sculptural forms from hyperbolic tessellations. In Shape Modeling and Applications, 2008. SMI 2008. IEEE International Conference on, IEEE, 155--161.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hildebrand, K., Bickel, B., and Alexa, M. 2012. Crdbrd: Shape fabrication by sliding planar slices. Comp. Graph. Forum 31, 2pt3 (May), 583--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hiller, J., and Lipson, H. 2009. Design and analysis of digital materials for physical 3d voxel printing. Rapid Prototyping Journal 15, 2, 137--149.Google ScholarGoogle ScholarCross RefCross Ref
  21. Hollister, S. J. 2005. Porous scaffold design for tissue engineering. Nature Materials 4, 7, 518--524.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kang, H. S. 2010. Hierarchical design and simulation of tissue engineering scaffold mechanical, mass transport, and degradation properties. PhD thesis, The University of Michigan.Google ScholarGoogle Scholar
  23. Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3 (July), 51:1--51:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lin, C. Y., Kikuchi, N., and Hollister, S. J. 2004. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. Journal of Biomechanics 37, 5, 623--636.Google ScholarGoogle ScholarCross RefCross Ref
  25. Lin, C.-Y., Hsiao, C.-C., Chen, P.-Q., and Hollister, S. J. 2004. Interbody fusion cage design using integrated global layout and local microstructure topology optimization. Spine 29, 16, 1747--1754. PMID: 15303018.Google ScholarGoogle ScholarCross RefCross Ref
  26. Liu, L., James, R. D., and Leo, P. H. 2007. Periodic inclusionatrix microstructures with constant field inclusions. Metallurgical and Materials Transactions A 38, 4, 781--787.Google ScholarGoogle ScholarCross RefCross Ref
  27. Mela, K., and Koski, J. 2013. Distributed loads in truss topology optimization. In Proceedings of the 10th world congress on structural and multidisciplinary optimization, Orlando.Google ScholarGoogle Scholar
  28. Milton, G. W. 2002. The theory of composites. Cambridge University Press.Google ScholarGoogle Scholar
  29. Mironov, V., Visconti, R. P., Kasyanov, V., Forgacs, G., Drake, C. J., and Markwald, R. R. 2009. Organ printing: tissue spheroids as building blocks. Biomaterials 30, 12, 2164--2174.Google ScholarGoogle ScholarCross RefCross Ref
  30. Mitani, J., and Suzuki, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. In ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA, SIGGRAPH '04, ACM, 259--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. In ACM SIGGRAPH 2007 Papers, ACM, New York, NY, USA, SIGGRAPH '07, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Nakasone, P., and Silva, E. 2010. Dynamic design of piezoelectric laminated sensors and actuators using topology optimization. Journal of Intelligent Material Systems and Structures 21, 16, 1627--1652.Google ScholarGoogle ScholarCross RefCross Ref
  33. Radman, A., Huang, X., and Xie, Y. 2013. Topological optimization for the design of microstructures of isotropic cellular materials. Engineering Optimization 45, 11, 1331--1348.Google ScholarGoogle ScholarCross RefCross Ref
  34. Schwartzburg, Y., and Pauly, M. 2013. Fabrication-aware design with intersecting planar pieces. Comput. Graph. Forum 32, 2, 317--326.Google ScholarGoogle ScholarCross RefCross Ref
  35. Schwartzburg, Y., Testuz, R., Tagliasacchi, A., and Pauly, M. 2014. High-contrast computational caustic design. ACM Trans. Graph. 33, 4 (July), 74:1--74:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Schwerdtfeger, J., Wein, F., Leugering, G., Singer, R. F., Krner, C., Stingl, M., and Schury, F. 2011. Design of auxetic structures via mathematical optimization. Advanced Materials 23, 22, 2650--2654.Google ScholarGoogle ScholarCross RefCross Ref
  37. Si, H. 2010. A quality tetrahedral mesh generator and a 3D Delaunay triangulator. URL http://tetgen.berlios.de.Google ScholarGoogle Scholar
  38. Sigmund, O. 1995. Tailoring materials with prescribed elastic properties. Mechanics of Materials 20, 4, 351--368.Google ScholarGoogle ScholarCross RefCross Ref
  39. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Transactions on Graphics (TOG) 32, 4, 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Torquato, S., and Donev, A. 2004. Minimal surfaces and multifunctionality. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 460, 2047, 1849--1856.Google ScholarGoogle Scholar
  41. Torquato, S., Hyun, S., and Donev, A. 2002. Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. Physical review letters 89, 26, 266601.Google ScholarGoogle Scholar
  42. Torquato, S., Hyun, S., and Donev, A. 2003. Optimal design of manufacturable three-dimensional composites with multifunctional characteristics. Journal of Applied Physics 94, 9, 5748--5755.Google ScholarGoogle ScholarCross RefCross Ref
  43. Torquato, S. 2002. Random heterogeneous materials: microstructure and macroscopic properties, vol. 16. Springer.Google ScholarGoogle Scholar
  44. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. Openfab: A programmable pipeline for multimaterial fabrication. ACM Transactions on Graphics (TOG) 32, 4, 136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, 32:1--32:6. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Elastic textures for additive fabrication

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 34, Issue 4
        August 2015
        1307 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2809654
        Issue’s Table of Contents

        Copyright © 2015 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 27 July 2015
        Published in tog Volume 34, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader