skip to main content
10.1145/2616498.2616552acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Performance Improvement and Workflow Development of Virtual Diffraction Calculations

Authors Info & Claims
Published:13 July 2014Publication History

ABSTRACT

Electron and x-ray diffraction are well-established experimental methods used to explore the atomic scale structure of materials. In this work, a computational algorithm is presented to produce electron and x-ray diffraction patterns directly from atomistic simulation data. This algorithm advances beyond previous virtual diffraction methods by utilizing an ultra high-resolution mesh of reciprocal space which eliminates the need for a priori knowledge of the material structure. This paper focuses on (1) algorithmic advances necessary to improve performance, memory efficiency and scalability of the virtual diffraction calculation, and (2) the integration of the diffraction algorithm into a workflow across heterogeneous computing hardware for the purposes of integrating simulations, virtual diffraction calculations and visualization of electron and x-ray diffraction patterns.

References

  1. Willams, D.B., Carter, C.B. 2009 Transmission Electron Microscopy: A Textbook for Materials Science. Springer, New York, NY.Google ScholarGoogle Scholar
  2. Ungar, T. and Borbely, A. 1996. The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 3173--3175.Google ScholarGoogle ScholarCross RefCross Ref
  3. Meyer, K.E., Felcher, G.P., Sinha, S.K., Schuller, I.K. 1981. Models of diffraction from layered ultrathin coherent structures. J. Appl. Phys. 52, 6608--6610.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bristowe, P.D., Sass, S.L. 1980. The atomic-structure of a large-angle {001} twist boundary in gold determined by a join computer modeling and x-ray-diffraction study. Acta Metall. 28, 575--588.Google ScholarGoogle ScholarCross RefCross Ref
  5. Budai, J., Bristowe, P.D., and Sass, S.L. 1983. The projected atomic-structure of a large-angle {001} sigma=5 twist boundary in gold: Diffraction analysis and theoretical predictions. Acta Metall. 31, 699--712.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bristowe, P.D. and Balluffi, R.W. 1984. Effect of secondary relaxations on diffraction from high-sigma {001} twist boundaries. Surf. Sci. 144, 14--27.Google ScholarGoogle ScholarCross RefCross Ref
  7. Oh, Y. and Vitek, V. 1986. Structural multiplicity of sigma=5(001) twist boundaries and interpretation of x-ray-diffraction from these boundaries. Acta Metall. 34, 1941--1953.Google ScholarGoogle ScholarCross RefCross Ref
  8. Fitzsimmons, M.R. and Sass, S.L. 1988. Quantitative x-ray-diffraction study of the atomic-structure of the sigma=5 {001} twist boundary in gold. Acta Metall. 36, 3103--3122.Google ScholarGoogle ScholarCross RefCross Ref
  9. Brandstetter, S., Derlet, P.M., Van Petegem, S., and Van Swygenhoven, H. 2008. Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations. Acta Mater. 56, 165--176.Google ScholarGoogle ScholarCross RefCross Ref
  10. Stukowski, A., Markmann, J., Weissmüller, J. and Albe, K. 2009. Atomistic origin of microstrain broadening in diffraction data of nanocrystalline solids. Acta Mater. 57, 1648--1654.Google ScholarGoogle ScholarCross RefCross Ref
  11. Markmann, J., Yamakov, V. and Weissmüller, J. 2008. Validating grain size analysis from X-ray line broadening: A virtual experiment. Scr. Mater. 59, 15--18.Google ScholarGoogle ScholarCross RefCross Ref
  12. Markmann, J., Bachurin, D., Shao, L., Gumbsch, P. and Weissmüller, J. 2010. Microstrain in nanocrystalline solids under load by virtual diffraction. Europhysics Lett. 89, 66002.Google ScholarGoogle ScholarCross RefCross Ref
  13. Derlet, P.M., Van Petegem, S. and Van Swygenhoven, H. 2005. Calculation of x-ray spectra for nanocrystalline materials. Phys. Rev. B 71, 024114.Google ScholarGoogle ScholarCross RefCross Ref
  14. Van Swygenhoven, H., Budrovie, Z., Derlet, P.M., Froseth, A.G., Van Petegem, S. 2005. In situ diffraction profile analysis during tensile deformation motivated by molecular dynamics. Mater. Sci. Eng. A 400, 329--333.Google ScholarGoogle ScholarCross RefCross Ref
  15. LAMMPS 2014. http://lammps.sandia.gov.Google ScholarGoogle Scholar
  16. Coleman, S.P., Spearot, D.E., Capolungo, L. 2013. Virtual diffraction analysis of Ni {010} symmetric tilt grain boundaries. Model. and Simul. in Mater. Sci. and Engin. 21, 055020.Google ScholarGoogle ScholarCross RefCross Ref
  17. Coleman, S.P., Sichani, M.M., Spearot, D.E. 2014. A computational algorithm to produce virtual x-ray and electron diffraction patterns from atomistic simulations. JOM 66, 408--416.Google ScholarGoogle ScholarCross RefCross Ref
  18. B. E. Warren 1990. X-Ray Diffraction, Dover Publications, New York, NY.Google ScholarGoogle Scholar
  19. Colliex, C., Cowley, J.M., Dudarev, S.L., Fink, M., Gjønnes, K., Hilderbrandt, R., Howie, A., Lynch, D.F., Peng, L.-M., Ren, G., Ross, A.W., Smith Jr., V.H., Spence, J.C.H., Steeds, J., Wang, J., Whelan, M.J. and Zvyagin, B.B. 2004. Scattering factors for the diffraction of electrons by crystalline solids. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables, 3rd ed., edited by: Prince, E., Kluwer Academic Publishers, Norwell, MA, 259--429.Google ScholarGoogle Scholar
  20. Peng, L.-M., Ren, G., Dudarev, S.L. and Whelan, M.J. 1996. Robust parameterization of elastic and absorptive electron atomic scattering factors. Acta Crystallogr. Sect. A 52, 257--276.Google ScholarGoogle ScholarCross RefCross Ref
  21. Brown, P.J., Fox, A.G., Maslen, E.N., O'Keefe, M.A. and Willis, B.T.M. 2004. X-ray scattering. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables, 3rd ed., edited by: Prince, E., Kluwer Academic Publishers, Norwell, MA, 554--595.Google ScholarGoogle Scholar
  22. Fox, A.G., O'Keefe, M.A. and Tabbernor, M.A. 1989. Relativistic Hartree-Fock x-ray and electron atomic scattering factors at high angles. Acta Crystallogr. Sect. A 45, 786--793.Google ScholarGoogle ScholarCross RefCross Ref
  23. Ishizawa, N., Miyata, T., Minato, I., Marumo, F., Iwai, S. 1980. A structural investigation of alpha-Al2O3 at 2170 K. Acta Crystallographica B 36, 228--230.Google ScholarGoogle ScholarCross RefCross Ref
  24. VisIt 2014. https://wci.llnl.gov/codes/visit/.Google ScholarGoogle Scholar
  25. Levin, I. and Brandon, D. 1998. Metastable alumina polymorphs: Crystal structures and transition sequences. J. Am. Ceram. Soc. 81, 1995--2012.Google ScholarGoogle ScholarCross RefCross Ref
  26. Dooley, R., Milfeld, K., Guiang, C., Pamidighantam, S. and Allen, G. 2006. From proposal to production: Lessons learned developing the computational chemistry grid cyberinfrastructure. J. Grid Comp. 4, 195--208.Google ScholarGoogle ScholarCross RefCross Ref
  27. Shen, N., Fan, Y. and Pamidighantam, S. 2014. E-science infrastructures for molecular modeling and parameterization. J. Comp. Sci. in press.Google ScholarGoogle ScholarCross RefCross Ref
  28. Marru, S., Herath, C., Tangchaisin, P., Pierce, M., Mattmann, C., Singh, R., Gunarathne, T., Chinthaka, E., Gardler, R., Slominski, A., Douma, A., Perera, S., Gunathilake, L. and Weerawarana, S. 2011. Apache airavata: a framework for distributed applications and computational workflows. Proceedings of the 2011 ACM Workshop on Gateway Computing Environments, 21--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. http://www.unicore.eu.Google ScholarGoogle Scholar

Index Terms

  1. Performance Improvement and Workflow Development of Virtual Diffraction Calculations

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Other conferences
          XSEDE '14: Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
          July 2014
          445 pages
          ISBN:9781450328937
          DOI:10.1145/2616498
          • General Chair:
          • Scott Lathrop,
          • Program Chair:
          • Jay Alameda

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 13 July 2014

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed limited

          Acceptance Rates

          XSEDE '14 Paper Acceptance Rate80of120submissions,67%Overall Acceptance Rate129of190submissions,68%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader