skip to main content
research-article

Compressive light field photography using overcomplete dictionaries and optimized projections

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Light field photography has gained a significant research interest in the last two decades; today, commercial light field cameras are widely available. Nevertheless, most existing acquisition approaches either multiplex a low-resolution light field into a single 2D sensor image or require multiple photographs to be taken for acquiring a high-resolution light field. We propose a compressive light field camera architecture that allows for higher-resolution light fields to be recovered than previously possible from a single image. The proposed architecture comprises three key components: light field atoms as a sparse representation of natural light fields, an optical design that allows for capturing optimized 2D light field projections, and robust sparse reconstruction methods to recover a 4D light field from a single coded 2D projection. In addition, we demonstrate a variety of other applications for light field atoms and sparse coding, including 4D light field compression and denoising.

Skip Supplemental Material Section

Supplemental Material

tp171.mp4

mp4

25.1 MB

References

  1. Adelson, E., and Wang, J. 1992. Single Lens Stereo with a Plenoptic Camera. IEEE Trans. PAMI 14, 2, 99--106. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ashok, A., and Neifeld, M. A. 2010. Compressive Light Field Imaging. In Proc. SPIE 7690, 76900Q.Google ScholarGoogle Scholar
  3. Babacan, S., Ansorge, R., Luessi, M., Mataran, P., Molina, R., and Katsaggelos, A. 2012. Compressive Light Field Sensing. IEEE Trans. Im. Proc. 21, 12, 4746--4757.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bishop, T., Zanetti, S., and Favaro, P. 2009. Light-Field Superresolution. In Proc. ICCP, 1--9.Google ScholarGoogle Scholar
  5. Candès, E., and Wakin, M. B. 2008. An Introduction to Compressive Sampling. IEEE Signal Processing 25, 2, 21--30.Google ScholarGoogle ScholarCross RefCross Ref
  6. Candès, E. J., Eldar, Y. C., Needell, D., and Randall, P. 2011. Compressed Sensing with Coherent and Redundant Dictionaries. Appl. and Comp. Harmonic Analysis 31, 1, 59--73.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chen, S. S., Donoho, D. L., Michael, and Saunders, A. 1998. Atomic Decomposition by Basis Pursuit. SIAM J. on Scientific Computing 20, 33--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Donoho, D. 2006. Compressed Sensing. IEEE Trans. Inform. Theory 52, 4, 1289--1306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Duarte-Carvajalino, J., and Sapiro, G. 2009. Learning to sense sparse signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization. IEEE Trans. Im. Proc. 18, 7, 1395--1408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Elad, M., and Aharon, M. 2006. Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries. IEEE Trans. Im. Proc. 15, 12, 3736--3745. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Feigin, M., Feldman, D., and Sochen, N. A. 2012. From High Definition Image to Low Space Optimization. In Scale Space and Var. Methods in Comp. Vision, vol. 6667, 459--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fergus, R., Torralba, A., and Freeman, W. T. 2006. Random Lens Imaging. Tech. Rep. TR-2006-058, MIT.Google ScholarGoogle Scholar
  13. Georgiev, T., and Lumsdaine, A. 2006. Spatio-angular Resolution Tradeoffs in Integral Photography. Proc. EGSR, 263--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Gortler, S., Grzeszczuk, R., Szelinski, R., and Cohen, M. 1996. The Lumigraph. In Proc. ACM SIGGRAPH, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Heide, F., Wetzstein, G., Raskar, R., and Heidrich, W. 2013. Adaptive Image Synthesis for Compressive Displays. ACM Trans. Graph. (SIGGRAPH) 32, 4, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hitomi, Y., Gu, J., Gupta, M., Mitsunaga, T., and Nayar, S. K. 2011. Video from a Single Coded Exposure Photograph using a Learned Over-Complete Dictionary. In Proc. IEEE ICCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ives, H., 1903. Parallax Stereogram and Process of Making Same. US patent 725,567.Google ScholarGoogle Scholar
  18. Kamal, M., Golbabaee, M., and Vandergheynst, P. 2012. Light Field Compressive Sensing in Camera Arrays. In Proc. ICASSP, 5413--5416.Google ScholarGoogle Scholar
  19. Lanman, D., Raskar, R., Agrawal, A., and Taubin, G. 2008. Shield Fields: Modeling and Capturing 3D Occluders. ACM Trans. Graph. (SIGGRAPH Asia) 27, 5, 131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs. ACM Trans. Graph. (SIGGRAPH Asia) 30, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Levin, A., Freeman, W. T., and Durand, F. 2008. Understanding Camera Trade-Offs through a Bayesian Analysis of Light Field Projections. In Proc. ECCV, 88--101. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Levin, A., Hasinoff, S. W., Green, P., Durand, F., and Freeman, W. T. 2009. 4D Frequency Analysis of Computational Cameras for Depth of Field Extension. ACM Trans. Graph. (SIGGRAPH) 28, 3, 97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Levoy, M., and Hanrahan, P. 1996. Light Field Rendering. In Proc. ACM SIGGRAPH, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liang, C.-K., Lin, T.-H., Wong, B.-Y., Liu, C., and Chen, H. H. 2008. Programmable Aperture Photography: Multiplexed Light Field Acquisition. ACM Trans. Graph. (SIGGRAPH) 27, 3, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lippmann, G. 1908. La Photographie Intégrale. Academie des Sciences 146, 446--451.Google ScholarGoogle Scholar
  26. Lumsdaine, A., and Georgiev, T. 2009. The Focused Plenoptic Camera. In Proc. ICCP, 1--8.Google ScholarGoogle Scholar
  27. Mairal, J., Bach, F., Ponce, G., and Sapiro, G. 2009. Online Dictionary Learning For Sparse Coding. In International Conference on Machine Learning. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Marcia, R. F., and Willett, R. M. 2008. Compressive coded aperture video reconstruction. In EUSIPCO.Google ScholarGoogle Scholar
  29. Natarajan, B. K. 1995. Sparse Approximate Solutions to Linear Systems. SIAM J. Computing 24, 227--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light Field Photography with a Hand-Held Plenoptic Camera. Tech. rep., Stanford University.Google ScholarGoogle Scholar
  31. Ng, R. 2005. Fourier Slice Photography. ACM Trans. Graph. (SIGGRAPH) 24, 3, 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Park, J. Y., and Wakin, M. B. 2012. A geometric approach to multi-view compressive imaging. EURASIP Journal on Advances in Signal Processing 37.Google ScholarGoogle Scholar
  33. Peers, P., Mahajan, D. K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., and Debevec, P. 2009. Compressive Light Transport Sensing. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Perwass, C., and Wietzke, L. 2012. Single Lens 3D-Camera with Extended Depth-of-Field. In Proc. SPIE 8291, 29--36.Google ScholarGoogle Scholar
  35. Reddy, D., Veeraraghavan, A., and Chellappa, R. 2011. P2C2: Programmable Pixel Compressive Camera for High Speed Imaging. In Proc. IEEE CVPR, 329--336. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sen, P., and Darabi, S. 2009. Compressive Dual Photography. Computer Graphics Forum 28, 609--618.Google ScholarGoogle ScholarCross RefCross Ref
  37. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., and Tumblin, J. 2007. Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocussing. ACM Trans. Graph. (SIGGRAPH) 26, 3, 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Wakin, M. B., Laska, J. N., Duarte, M. F., Baron, D., Sarvotham, S., Takhar, D., Kelly, K. F., and Baraniuk, R. G. 2006. Compressive imaging for video representation and coding. In Picture Coding Symposium.Google ScholarGoogle Scholar
  39. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays. ACM Trans. Graph. (SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wetzstein, G., Ihrke, I., and Heidrich, W. 2012. On Plenoptic Multiplexing and Reconstruction. IJCV, 1--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. 2005. High Performance Imaging using Large Camera Arrays. ACM Trans. Graph. (SIGGRAPH) 24, 3, 765--776. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Xu, Z., and Lam, E. Y. 2012. A High-resolution Lightfield Camera with Dual-mask Design. In Proc. SPIE 8500, 85000U.Google ScholarGoogle Scholar
  44. Yang, A., Ganesh, A., Sastry, S., and Ma, Y. 2010. Fast L1-Minimization Algorithms and An Application in Robust Face Recognition: A Review. Tech. rep., UC Berkeley.Google ScholarGoogle Scholar
  45. Yang, J., Wang, Z., Lin, Z., Cohen, S., and Huang, T. 2012. Coupled Dictionary Training for Image Super-Resolution. IEEE Trans. Im. Proc. 21, 8, 3467--3478.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Compressive light field photography using overcomplete dictionaries and optimized projections

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader