skip to main content
research-article

Closest point turbulence for liquid surfaces

Published:30 April 2013Publication History
Skip Abstract Section

Abstract

We propose a method of increasing the apparent spatial resolution of an existing liquid simulation. Previous approaches to this “up-resing” problem have focused on increasing the turbulence of the underlying velocity field. Motivated by measurements in the free surface turbulence literature, we observe that past certain frequencies, it is sufficient to perform a wave simulation directly on the liquid surface, and construct a reduced-dimensional surface-only simulation. We sidestep the considerable problem of generating a surface parameterization by employing an embedding technique known as the Closest Point Method (CPM) that operates directly on a 3D extension field. The CPM requires 3D operators, and we show that for surface operators with no natural 3D generalization, it is possible to construct a viable operator using the inverse Abel transform. We additionally propose a fast, frozen core closest point transform, and an advection method for the extension field that reduces smearing considerably. Finally, we propose two turbulence coupling methods that seed the high-resolution wave simulation in visually expected regions.

Skip Supplemental Material Section

Supplemental Material

tp157.mp4

mp4

22.5 MB

References

  1. Adalsteinsson, D. and Sethian, J. 2003. Transport and diffusion of material quantities on propagating interfaces via level set methods. J. Comput. Phys. 185, 1, 271--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Angelidis, A., Anon, J., Bruins, G., Reisch, J., and Varagnolo, E. 2011. Ocean mission on Cars 2. In ACM SIGGRAPH Talks. 17:1--17:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Angst, R., Thurey, N., Botsch, M., and Gross, M. 2008. Robust and efficient wave simulations on deforming meshes. Comput. Graph. Forum 27, 6, 1895--1900.Google ScholarGoogle ScholarCross RefCross Ref
  4. Auer, S., MacDonald, C., Treib, M., Schneider, J., and Westermann, R. 2012. Real-Time fluid effects on surfaces using the closest point method. Comput. Graph. Forum 31, 6, 1909--1923. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006a. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 19--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bargteil, A. W., Sin, F., Michaels, J. E., Goktekin, T. G., and O'Brien, J. F. 2006b. A texture synthesis method for liquid animations. In Proceedings of the ACM/Eurographics Symposium on Computer Animation. 345--351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. Tracks: Toward directable thin shells. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bertalmio, M., Cheng, L.-T., Osher, S., and Sapiro, G. 2001. Variational problems and partial differential equations on implicit surfaces. J. Comput. Phys. 174, 2, 759--780. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bracewell, R. 1999. The Fourier Transform and Its Applications. McGraw-Hill.Google ScholarGoogle Scholar
  10. Brocchini, M. and Peregrine, D. H. 2001. The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech. 449, 225--254.Google ScholarGoogle ScholarCross RefCross Ref
  11. Carlson, D. 2007. Wave displacement effects for surf's up. In ACM SIGGRAPH Sketches. ACM Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Chentanez, N. and Muller, M. 2010. Real-Time simulation of large bodies of water with small scale details. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Chentanez, N. and Muller, M. 2011. Real-Time eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. 30, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chuang, M., Luo, L., Brown, B. J., Rusinkiewicz, S., and Kazhdan, M. 2009. Estimating the laplace-beltrami operator by restricting 3d functions. In Proceedings of the Eurographics Symposium on Geometry Processing. 1475--1484. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Darles, E., Crespin, B., Ghazanfarpour, D., and Gonzato, J. 2011. A survey of ocean simulation and rendering techniques in computer graphics. Comput. Graph. Forum 30, 43--60.Google ScholarGoogle ScholarCross RefCross Ref
  16. Dias, F. and Kharif, C. 1999. Nonlinear gravity and capillary-gravity waves. Ann. Rev. Fluid Mech. 31, 301--346.Google ScholarGoogle ScholarCross RefCross Ref
  17. Dubey, P., Hanrahan, P., Fedkiw, R., Lentine, M., and Schroeder, C. 2011. PhysBAM: Physically based simulation. In ACM SIGGRAPH Courses. 10:1--10:22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Falcon, E. 2010. Laboratory experiments on wave turbulence. Discr. Cont. Dyn. B13, 819--840.Google ScholarGoogle ScholarCross RefCross Ref
  19. Flores, L. and Horsley, D. 2009. Underground cave sequence for Land of the Lost. In ACM SIGGRAPH Talks. ACM Press, New York, 6:1--6:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Foster, N. and Fedkiw, R. 2001. Practical animation of liquids. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Greer, J. B. 2006. An improvement of a recent Eulerian method for solving pdss on general geometrics. J. Sci. Comput. 29, 3, 321--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Heo, N. and Ko, H.-S. 2010. Detail-Preserving fully-Eulerian interface tracking framework. ACM Trans. Graph. 29, 176:1--176:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hong, Y., Zhu, D., Qiu, X., and Wang, Z. 2010. Geometry-Based control of fire simulation. Vis. Comput. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Huang, R., Melek, Z., and Keyser, J. 2011. Preview-Based sampling for controlling gaseous simulations. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 177--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Jang, T., Kim, H., Bae, J., Seo, J., and Noh, J. 2010. Multilevel vorticity confinement for water turbulence simulation. Vis. Comput. 26, 873--881. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Johnson, R. S. 1997. A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press.Google ScholarGoogle Scholar
  27. Kim, D., Song, O.-Y., and Ko, H.-S. 2009. Stretching and wiggling liquids. ACM Trans. Graph. 28, 5, 120:1--120:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kim, T., Thurey, N., James, D., and Gross, M. 2008. Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27, 50:1--50:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Komori, S., Murakami, Y., and Ueda, H. 1989. The relationship between surface-renewal and bursting motions in an open channel flow. J. Fluid Mech. 203, 103--123.Google ScholarGoogle ScholarCross RefCross Ref
  30. Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N., Carlson, M., and Lin, M. 2007. Texturing fluids. IEEE Trans. Vis. Comput. Graph. 13, 5, 939--952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lait, J. 2011. Correcting low frequency impulses in distributed simulations. In ACM SIGGRAPH Talks. 53:1--53:2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. ACM Trans. Graph. 29, 114:1--114:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Losasso, F., Fedkiw, R., and Osher, S. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 10, 995--1010.Google ScholarGoogle ScholarCross RefCross Ref
  34. Ma, C., Wei, L.-Y., Guo, B., and Zhou, K. 2009. Motion field texture synthesis. ACM Trans. Graph. 28, 5, 110:1--110:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. MacDonald, C. B., Brandman, J., and Ruuth, S. J. 2011. Solving eigenvalue problems on curved surfaces using the closest point method. J. Comput. Phys. 230, 22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. MacDonald, C. B. and Ruuth, S. J. 2008. Level set equations on surfaces via the closest point method. J. Sci. Comput. 35, 2-3, 219--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. MacDonald, C. B. and Ruuth, S. J. 2009. The implicit closest point method for the numerical solution of partial differential equations on surfaces. J. Sci. Comput. 31, 6, 4330--4350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mauch, S. 2003. Efficient algorithms for solving static Hamilton-Jacobi equations. Ph.D. thesis, California Institute of Technology, Pasadena, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. McNamara, A., Treuille, A., Popovic, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Miller, K. and Ross, B. 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley & Sons.Google ScholarGoogle Scholar
  41. Museth, K., Breen, D. E., Whitaker, R. T., and Barr, A. H. 2002. Level set surface editing operators. ACM Trans. Graph. 21, 330--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Narain, R., Kwatra, V., Lee, H.-P., Kim, T., Carlson, M., and Lin, M. C. 2007. Feature-Guided dynamic texture synthesis on continuous flows. In Proceedings of the Eurographics Symposium on Rendering. 361--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Narain, R., Sewall, J., Carlson, M., and Lin, M. C. 2008. Fast animation of turbulence using energy transport and procedural synthesis. ACM Trans. Graph. 27, 166:1--166:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Nielsen, M. B. and Bridson, R. 2011. Guide shapes for high resolution naturalistic liquid simulation. ACM Trans. Graph. 30, 83:1--83:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Nielsen, M. B., Christensen, B. B., Zafar, N. B., Roble, D., and Museth, K. 2009. Guiding of smoke animation through variational coupling of simulations at different resolutions. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 217--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Patel, S., Tessendorf, J., and Molemaker, J. 2009. Monocoupled 3D and 2D river simulations. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Posters Session.Google ScholarGoogle Scholar
  47. Pharr, M. and Humphreys, G. 2010. Physically-Based Rendering: From Theory to Implementation. Morgan Kaufmann, San Fransisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Podlubny, I. 1999. Fractional Differential Equations. Academic Press.Google ScholarGoogle Scholar
  49. Ruuth, S. J. and Merriman, B. 2008. A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227, 3, 1943--1961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Savelsberg, R. and van de Water, W. 2008. Turbulence of a free surface. Physical Rev. Lett. 100, 034501.Google ScholarGoogle ScholarCross RefCross Ref
  51. Schechter, H. and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable maccormack method. J. Sci. Comput. 35, 2-3, 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Shi, L. and Yu, Y. 2005. Taming liquids for rapidly changing targets. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 229--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Stam, J. 1999. Stable fluids. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Tessendorf, J. 2004a. Interactive water surfaces. In Game Programming Gems 4. Charles River Media.Google ScholarGoogle Scholar
  56. Tessendorf, J. 2004b. Simulating ocean water. In ACM SIGGRAPH Courses.Google ScholarGoogle Scholar
  57. Tessendorf, J. 2008. Vertical derivative math for iwave. http://people. clemson.edu/~jtessen/papers_files/verticalderivativesforiwave.pdf.Google ScholarGoogle Scholar
  58. Tessendorf, J. 2011. Resolution independent volumes. In ACM SIGGRAPH Courses.Google ScholarGoogle Scholar
  59. Thurey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Trans. Graph. 29, 48:1--48:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Wardetzky, M., Mathur, S., Kalberer, F., and Grinspun, E. 2007. Discrete laplace operators: No free lunch. In Proceedings of the Eurographics Symposium on Geometry Processing. 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Wojtan, C., Thurey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Trans. Graph. 28, 3, 9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Yu, J., Wojtan, C., Turk, G., and Yap, C. 2012. Explicit mesh surfaces for particle based fluids. Comput. Graph. Forum 31, 2, 815--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Yuan, Z., Chen, F., and Zhao, Y. 2011. Pattern-Guided smoke animation with lagrangian coherent structure. ACM Trans. Graph. 30, 136:1--136:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Yuan, Z., Zhao, Y., and Chen, F. 2012. Incorporating stochastic turbulence in particle-based fluid simulation. Vis. Comput., 435--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Yuksel, C., House, D. H., and Keyser, J. 2007. Wave particles. ACM Trans. Graph. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Zakharov, V. E., L'Vov, V. S., and Falkovich, G. 1992. Kolmogorov Spectra of Turbulence 1: Wave Turbulence. Springer.Google ScholarGoogle Scholar
  67. Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Closest point turbulence for liquid surfaces

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 32, Issue 2
            April 2013
            134 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2451236
            Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 30 April 2013
            • Accepted: 1 November 2012
            • Revised: 1 September 2012
            • Received: 1 May 2012
            Published in tog Volume 32, Issue 2

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article
            • Research
            • Refereed

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader