skip to main content
research-article

An invariance principle for polytopes

Published:09 January 2013Publication History
Skip Abstract Section

Abstract

Let X be randomly chosen from {-1,1}n, and let Y be randomly chosen from the standard spherical Gaussian on ℝn. For any (possibly unbounded) polytope P formed by the intersection of k halfspaces, we prove that |Pr[XP] - Pr[YP]| ≤ log8/5k ⋅ Δ, where Δ is a parameter that is small for polytopes formed by the intersection of “regular” halfspaces (i.e., halfspaces with low influence). The novelty of our invariance principle is the polylogarithmic dependence on k. Previously, only bounds that were at least linear in k were known. The proof of the invariance principle is based on a generalization of the Lindeberg method for proving central limit theorems and could be of use elsewhere.

We give two important applications of our invariance principle, one from learning theory and the other from pseudorandomness.

(1) A bound of logO(1)k ⋅ ϵ1/6 on the Boolean noise sensitivity of intersections of k “regular” halfspaces (previous work gave bounds linear in k). This gives a corresponding agnostic learning algorithm for intersections of regular halfspaces.

(2) A pseudorandom generator (PRG) for estimating the Gaussian volume of polytopes with k faces within error δ and seed-length O(log n poly(log k,1/δ)).

We also obtain PRGs with similar parameters that fool polytopes formed by intersection of regular halfspaces over the hypercube. Using our PRG constructions, we obtain the first deterministic quasi-polynomial time algorithms for approximately counting the number of solutions to a broad class of integer programs, including dense covering problems and contingency tables.

References

  1. Ailon, N. and Chazelle, B. 2006. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform. In Proceedings of the 38th ACM Symposium on Theory of Computing (STOC). 557--563. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Austrin, P. 2007. Balanced max 2-sat might not be the hardest. In Proceedings of the 39th ACM Symposium on Theory of Computing (STOC), D. S. Johnson and U. Feige, Eds. ACM, 189--197. http://doi.acm.org.10.1145 1250790.1250818. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Austrin, P. 2010. Towards sharp inapproximability for any 2-CSP. SIAM J. Comput 39, 6, 2430--2463. http://dx.doi.org/10.1137/07011670. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bansal, N. and Khot, S. 2010. Inapproximability of hypergraph vertex cover and applications to scheduling problems. In Proceedings of the International Colloquim on Automata, Languages, and Programming (ICALP), S. Abramsky, C. Gavoille, C. Kirchner, F. M. auf der Heide, and P. G. Spirakis, Eds. Lecture Notes in Computer Science Series, vol. 6198. Springer, 250--261. http://dx.doi.org/10.1007/978-3-642-14165-2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barvinok, A. and Veomett, E. 2008. The computational complexity of convex bodies. In Surveys on Discrete and Computational Geometry: Twenty Years Later, J. E. Goodman, J. Pach, and R. Pollack, Eds., Contemporary Mathematics Series, vol. 453. AMS, 117--137. http://www.ams.org/bookstore-getitem/item=COMM-453, arXiv:math/0610325.Google ScholarGoogle Scholar
  6. Beck, M. and Robins, S. 2007. Computing the Continuous Discretely: Integer-point Enumeration in Polyhedra 1st Ed. Undergraduate Texts in Mathematics, Springer. http://math.sfsu.edu/beck/ccd.html.Google ScholarGoogle Scholar
  7. Benjamini, I., Kalai, G., and Schramm, O. 1999. Noise sensitivity of Boolean functions and applications to percolation. Inst. Hautes Études Sci. Publ. Math. 90, 1, 5--43.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bentkus, V. K. 1990. Smooth approximations of the norm and differentiable functions with bounded support in Banach space lk. Lithuan. Math. J. 30, 3, 223--230.Google ScholarGoogle ScholarCross RefCross Ref
  9. Bentkus, V. K. 2003. On the dependence of the Berry-Esseen bound on dimension. J. Stat. Plan. Inf. 113, 2, 385--402.Google ScholarGoogle ScholarCross RefCross Ref
  10. Blais, E. and O'Donnell, R. 2010. Lower bounds for testing function isomorphism. In Proceedings of the IEEE Conference on Computational Complexity. IEEE Computer Society, 235--246. http://doi. ieeecomputersociety.org/10.1109/CCC.2010.30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Chatterjee, S. 2005. A simple invariance theorem. arXiv:math/0508213.Google ScholarGoogle Scholar
  12. Cryan, M. and Dyer, M. E. 2003. A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant. J. Comput. Syst. Sci. 67, 2, 291--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. de Wolf, R. 2008. A brief introduction to Fourier analysis on the Boolean cube. Theory of Comput. Graduate Sur. 1, 1--20.Google ScholarGoogle ScholarCross RefCross Ref
  14. Diakonikolas, I., Harsha, P., Klivans, A., Meka, R., Raghavendra, P., Servedio, R. A., and Tan, L.-Y. 2010a. Bounding the average sensitivity and noise sensitivity of polynomial threshold functions. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), ACM, 533--542. http://doi.acm.org/10.1145/1806689.1806763. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Diakonikolas, I., Kane, D. M., and Nelson, J. 2010b. Bounded independence fools degree-2 threshold functions. In Proceedings of the 51st IEEE Symposium on Foundations of Computer Science (FOCS). IEEE, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Dinur, I., Friedgut, E., and Regev, O. 2008. Independent sets in graph powers are almost contained in juntas. Geomet. Funct. Anal. 18, 1, 77--97.Google ScholarGoogle ScholarCross RefCross Ref
  17. Dinur, I., Mossel, E., and Regev, O. 2009. Conditional hardness for approximate coloring. SIAM J. Comput 39, 3, 843--873. http://dx.doi.org/10.1137/07068062X. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Dyer, M. E. 2003. Approximate counting by dynamic programming. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC). 693--699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Feldman, V., Guruswami, V., Raghavendra, P., and Wu, Y. 2009. Agnostic learning of monomials by halfspaces is hard. In Proceedings of the 50th IEEE Symposium on Foundation of Computer Science (FOCS). IEEE Computer Society, 385--394. http://doi.ieeecomputersociety.org/10.1109/FOCS.2009.26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Feller, W. 1968. An Introduction to Probability Theory and Its Applications, Volume 1 3rd Ed. Wiley.Google ScholarGoogle Scholar
  21. Feller, W. 1971. An Introduction to Probability Theory and Its Applications, Volume 2 2nd Ed. Wiley.Google ScholarGoogle Scholar
  22. Goemans, M. X. and Williamson, D. P. 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 6, 1115--1145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gopalan, P., Klivans, A., and Meka, R. 2010a. Polynomial-time approximation schemes for knapsack and related counting problems using branching programs. Electron. Colloq. Comput. Complex. (ECCC) 17, 133. http://eccc.hpi-web.de/report/2010/133.Google ScholarGoogle Scholar
  24. Gopalan, P., O'Donnell, R., Wu, Y., and Zuckerman, D. 2010b. Fooling functions of halfspaces under product distributions. In Proceedings of 25th IEEE Conference on Computational Complexity 223--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Harsha, P., Klivans, A., and Meka, R. 2010. An invariance principle for polytopes. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC). ACM, 543--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Håstad, J. 2001. Some optimal inapproximability results. J. ACM 48, 4, 798--859. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Haussler, D. 1992. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Inf. Comput. 100, 1, 78--150. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Impagliazzo, R., Nisan, N., and Wigderson, A. 1994. Pseudorandomness for network algorithms. In Proceedings of the 26th ACM Symposium on Theory of Computing (STOC). ACM, 356--364. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Jerrum, M. and Sinclair, A. 1997. The Markov chain Monte Carlo method: An approach to approximate counting and integration. In Approximation Algorithms for NP-hard Problems, D. S. Hochbaum, Ed., PWS Publishing Company. http://www.ieor.berkeley.edu/-hochbaum/html/book-aanp.html. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Kahn, J., Kalai, G., and Linial, N. 1988. The influence of variables on Boolean functions (extended abstract). In Proceedings of the 29th IEEE Symposium on Foundations of Computer Science (FOCS). 68--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kalai, A. T., Klivans, A. R., Mansour, Y., and Servedio, R. A. 2008. Agnostically learning halfspaces. SIAM J. Comput. 37, 6, 1777--1805. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kalai, G. 2005. Noise sensitivity and chaos in social choice theory. Tech. rep. 399, Center for Rationality and Interactive Decision Theory, Hebrew University of Jerusalem. http://www.ratio.huji.ac.il/dp_files/dp-399.pdf.Google ScholarGoogle Scholar
  33. Kearns, M. J., Schapire, R. E., and Sellie, L. 1994. Toward efficient agnostic learning. Mach. Learn. 17, 2--3, 115--141. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Khot, S., Kindler, G., Mossel, E., and O'Donnell, R. 2007. Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37, 1, 319--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Klivans, A. R., O'Donnell, R., and Servedio, R. A. 2004. Learning intersections and thresholds of halfspaces. J. Comput. Syst. Sci. 68, 4, 808--840. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Klivans, A. R., O'Donnell, R., and Servedio, R. A. 2008. Learning geometric concepts via Gaussian surface area. In Proceedings of the Symposium on Foundations of Computer Science (FOCS) 541--550. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Linial, N., Mansour, Y., and Nisan, N. 1993. Constant depth circuits, Fourier transform, and learnability. J. ACM 40, 3, 607--620. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mahajan, S. and Hariharan, R. 1999. Derandomizing approximation algorithms based on semidefinite programming. SIAM J. Comput. 28, 5, 1641--1663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Mansour, Y. 1994. Learning Boolean functions via the Fourier transform. In Theoretical Advances in Neural Computation and Learning, V. P. Roychowdhury, K.-Y. Siu, and A. Orlitsky, Eds., Kluwer Academic Publishers, 391--424. http://www.springer.com/physics/complexity/book/978-0-7923-9478-5.Google ScholarGoogle Scholar
  40. Meka, R. and Zuckerman, D. 2010. Pseudorandom generators for polynomial threshold functions. In Proceedings of the ACM Symposium on Theory of Computing (STOC), 427--436. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Mossel, E. 2008. Gaussian bounds for noise correlation of functions and tight analysis of long codes. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), 156--165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Mossel, E. 2012. A quantitative arrow theorem. Probab. Theory Relat. Fields 154, 49--88. DOI: 10.1007/s00440-011-0362-7.Google ScholarGoogle ScholarCross RefCross Ref
  43. Mossel, E., O'Donnell, R., and Oleszkiewicz, K. 2005. Noise stability of functions with low influences invariance and optimality. In Proceedings of the 46th IEEE Symposium on Foundations of Computer Science (FOCS). 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Naor, J. and Naor, M. 1993. Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput. 22, 4, 838--856. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Nazarov, F. 2003. On the maximal perimeter of a convex set in ℝn with respect to a Gaussian measure. In Geometric Aspects of Functional Analysis (Israel Seminar 2001--2002). Lecture Notes in Mathematics Series, vol. 1807/2003, Springer, 169--187.Google ScholarGoogle Scholar
  46. O'Donnell, R. 2004. Hardness amplification within NP. J. Comput. Syst. Sci. 69, 1, 68--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. O'Donnell, R. 2008. Some topics in analysis of Boolean functions. In Proceedings of the 40th ACM Symposium on Theory of Computing (STOC). 569--578. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. O'Donnell, R. and Wu, Y. 2009. Conditional hardness for satisfiable 3-CSPs. In Proceedings of the 41st ACM Symposium on Theory of Computing (STOC). 493--502. http://doi.acm.org/10.1145/1536414.1536482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Paulauskas, V. and Račkauskas, A. 1989. Approximation Theory in the Central Limit Theorem: Exact Results in Banach Spaces. Kluwer Academic Publishers. (Translated from Russian).Google ScholarGoogle Scholar
  50. Peres, Y. 2004. Noise stability of weighted majority. (arXiv:math/0412377.)Google ScholarGoogle Scholar
  51. Pinelis, I. 1994. Extremal probabilistic problems and hotelling T2 test under a symmetry condition. Ann. Statist. 22, 1, 357--368.Google ScholarGoogle ScholarCross RefCross Ref
  52. Raghavendra, P. 2008. Optimal algorithms and inapproximability results for every CSP? In STOC, ACM, 245--254. http://doi.acm.org/10.1145/1374376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Rotar', V. I. 1979. Limit theorems for polylinear forms. J. Multivar. Anal. 9, 4, 511--530.Google ScholarGoogle ScholarCross RefCross Ref
  54. Shi, Y. 2000. Lower bounds of quantum black-box complexity and degree of approximating polynomials by influence of Boolean variables. Inf. Process. Lett. 75, 1-2, 79--83. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Tao, T. 2009. Talagrand's concentration inequality. (Post in Blog “What's new”). htt://terrytao.wordpress. com/2009/06/09/talagrands-concentration-inequality/.Google ScholarGoogle Scholar
  56. Wolff, P. 2007. Hypercontractivity of simple random variables. Studia Math 180, 3, 219--236.Google ScholarGoogle ScholarCross RefCross Ref
  57. Ziegler, G. M. 1995. Lectures on polytopes. Graduate texts in Mathematics Series, vol. 152. Springer. http://www.springer.com/math/geometry/book/978-0-387-94365-7.Google ScholarGoogle Scholar

Index Terms

  1. An invariance principle for polytopes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image Journal of the ACM
        Journal of the ACM  Volume 59, Issue 6
        December 2012
        213 pages
        ISSN:0004-5411
        EISSN:1557-735X
        DOI:10.1145/2395116
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 9 January 2013
        • Revised: 1 September 2012
        • Received: 1 September 2012
        • Accepted: 1 September 2012
        Published in jacm Volume 59, Issue 6

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader