skip to main content
10.1145/2342549.2342556acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free Access

Coarse-grained topology estimation via graph sampling

Published:17 August 2012Publication History

ABSTRACT

In many online networks, nodes are partitioned into categories (e.g., countries or universities in OSNs), which naturally defines a weighted category graph i.e., a coarse-grained version of the underlying network. In this paper, we show how to efficiently estimate the category graph from a probability sample of nodes. We prove consistency of our estimators and evaluate their efficiency via simulation. We also apply our methodology to a sample of Facebook users to obtain a number of category graphs, such as the college friendship graph and the country friendship graph. We share and visualize the resulting data at www.geosocialmap.com.

References

  1. Mapping Global Friendship Ties: http://tinyurl.com/TiesFB.Google ScholarGoogle Scholar
  2. N. Ahmed, J. Neville, and R. Kompella. Reconsidering the Foundations of Network Sampling. In Proc. of WIN, 2010.Google ScholarGoogle Scholar
  3. D. Aldous and J. A. Fill. Reversible Markov Chains and Random Walks on Graphs. In preparation.Google ScholarGoogle Scholar
  4. M. Gjoka, C. T. Butts, M. Kurant, and A. Markopoulou. Multigraph Sampling of Online Social Networks. IEEE JSAC on Measurement of Internet Topologies, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  5. M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking in Facebook: A Case Study of Unbiased Sampling of OSNs. In Proc. of IEEE INFOCOM, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Practical Recommendations on Crawling Online Social Networks. IEEE JSAC on Measurement of Internet Topologies, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  7. M. Hansen and W. Hurwitz. On the Theory of Sampling from Finite Populations. Annals of Math. Statistics, 1943.Google ScholarGoogle ScholarCross RefCross Ref
  8. D. D. Heckathorn. Respondent-Driven Sampling: A New Approach to the Study of Hidden Populations. Social Problems, 44:174--199, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  9. M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On near-uniform URL sampling. In Proc. of WWW, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. L. Katzir, E. Liberty, and O. Somekh. Estimating Sizes of Social Networks via Biased Sampling. In WWW, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. E. D. Kolaczyk. Statistical Analysis of Network Data, volume 69 of Springer Series in Statistics. 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Kurant, C. T. Butts, and A. Markopoulou. Graph Size Estimation. in preparation.Google ScholarGoogle Scholar
  13. M. Kurant, M. Gjoka, C. T. Butts, and A. Markopoulou. Walking on a Graph with a Magnifying Glass: Stratified Sampling via Weighted Random Walks. In Proc. of Sigmetrics, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Kurant, M. Gjoka, Y. Wang, Z. W. Almquist, C. T. Butts, and A. Markopoulou. Coarse-Grained Topology Estimation via Graph Sampling. arXiv:1105.5488, 2011.Google ScholarGoogle Scholar
  15. M. Kurant, A. Markopoulou, and P. Thiran. On the bias of BFS (Breadth First Search). In Proc. of ITC, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  16. M. Kurant, A. Markopoulou, and P. Thiran. Towards Unbiased BFS Sampling. IEEE JSAC on Measurement of Internet Topologies, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. H. Lee, P.-J. Kim, and H. Jeong. Statistical properties of sampled networks. Phys. Review E, 73:16102, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  18. J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proc. of SIGKDD, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty, 2(1):1--46, 1993.Google ScholarGoogle Scholar
  20. A. Maiya and T. Berger-Wolf. Sampling community structure. In WWW, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. M. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys. Review E, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  22. A. Rasti, M. Torkjazi, R. Rejaie, N. Duffield, W. Willinger, and D. Stutzbach. Respondent-driven sampling for characterizing unstructured overlays. In Proc. of IEEE INFOCOM Mini-conference, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  23. R. Rejaie, M. Torkjazi, M. Valafar, and W. Willinger. Sizing up online social networks. IEEE Network, 24(5):32--37, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. B. Ribeiro and D. Towsley. Estimating and sampling graphs with multidimensional random walks. In Proc.of IMC, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Salganik and D. D. Heckathorn. Sampling and estimation in hidden populations using respondent-driven sampling. Sociological Methodology, 34(1):193--240, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  26. D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger. On unbiased sampling for unstructured peer-to-peer networks. In Proc. of IMC, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Traud, P. Mucha, and M. Porter. Social Structure of Facebook Networks. arXiv:1102.2166, 2011.Google ScholarGoogle Scholar
  28. B. Viswanath, A. Mislove, M. Cha, and K. Gummadi. On the evolution of user interaction in facebook. In Proc. of WOSN, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. E. Volz and D. D. Heckathorn. Probability based estimation theory for respondent driven sampling. Journal of Official Statistics, 2008.Google ScholarGoogle Scholar
  30. S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge Univ. Press, 1994.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Coarse-grained topology estimation via graph sampling

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        WOSN '12: Proceedings of the 2012 ACM workshop on Workshop on online social networks
        August 2012
        80 pages
        ISBN:9781450314800
        DOI:10.1145/2342549

        Copyright © 2012 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 17 August 2012

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        WOSN '12 Paper Acceptance Rate12of36submissions,33%Overall Acceptance Rate12of36submissions,33%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader