skip to main content
10.1145/2338714.2338716acmconferencesArticle/Chapter ViewAbstractPublication Pagesweb3dConference Proceedingsconference-collections
research-article

Adaptive quad patches: an adaptive regular structure for web distribution and adaptive rendering of 3D models

Published:04 August 2012Publication History

ABSTRACT

We introduce an approach for efficient distribution and adaptive rendering of 3D mesh models supporting a simple quad parameterization. Our method extends and combines recent results in geometric processing, real-time rendering, and web programming. In particular: we exploit recent results on surface reconstruction and isometric parametrization to transform point clouds into two-manifold meshes whose parametrization domain is a small collection of 2D square regions; we encode the resulting parameterized meshes into a very compact multiresolution structures composed of variable resolution quad patches whose geometry and texture is stored in a tightly packed texture atlas; we adaptively stream and render variable resolution shape representations using a GPU-accelerated adaptive tessellation algorithm with negligible CPU overhead. Real-time performance is achieved on portable GPU platforms using OpenGL, as well as on exploiting emerging web-based environments based on WebGL. Promising applications of the technology range from the automatic creation of rapidly renderable objects for games to the set-up of browsable 3D models repositories in the web that will be accessible by upcoming generation of WebGL-enabled web browers.

Skip Supplemental Material Section

Supplemental Material

p9-gobbetti.mp4

mp4

16.8 MB

References

  1. Baboud, L., and Décoret, X. 2006. Rendering geometry with relief textures. In Graphics Interface, C. Gutwin and S. Mann, Eds., 195--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Blume, A., Chun, W., Kogan, D., Kokkevis, V., Weber, N., Petterson, R., and Zeiger, R. 2011. Google body: 3d human anatomy in the browser. In ACM SIGGRAPH 2011 Talks, ACM, 19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Borgeat, L., Godin, G., Blais, F., Massicotte, P., and Lahanier, C. 2005. Gold: interactive display of huge colored and textured models. ACM Trans. Graph. 24, 3, 869--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Boubekeur, T., and Schlick, C. 2005. Generic mesh refinement on gpu. In Graphics Hardware 2005, 99--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Boubekeur, T., and Schlick, C. 2008. A flexible kernel for adaptive mesh refinement on gpu. Computer Graphics Forum 27, 1, 102--114.Google ScholarGoogle ScholarCross RefCross Ref
  6. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R. 2004. Adaptive tetrapuzzles: efficient out-of-core construction and visualization of gigantic multiresolution polygonal models. ACM Trans. Graph. 23, 3, 796--803. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cignoni, P., Di Benedetto, M., Ganovelli, F., Gobbetti, E., Marton, F., and Scopigno, R. 2007. Ray-casted blockmaps for large urban visualization. Computer Graphics Forum 26, 3 (Sept.).Google ScholarGoogle ScholarCross RefCross Ref
  8. Di Benedetto, M., Ponchio, F., Ganovelli, F., and Scopigno, R. 2010. Spidergl: A javascript 3d graphics library for next-generation www. In Web3D 2010. 15th Conference on 3D Web technology. note. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dyken, C., Reimers, M., and Seland, J. 2009. Semi-uniform adaptive patch tessellation. Computer Graphics Forum 28, 8 (Dec.), 2255--2263.Google ScholarGoogle ScholarCross RefCross Ref
  10. Floater, M. S., and Hormann, K. 2005. Surface parameterization: a tutorial and survey. In Adv. in Multires. for Geom. Model., Math. and Vis. Springer, 157--186.Google ScholarGoogle Scholar
  11. Gobbetti, E., and Marton, F. 2004. Layered point clouds. In Proc. Eurographics Symposium on Point Based Graphics, 113--120, 227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gobbetti, E., and Marton, F. 2004. Layered point clouds -- a simple and efficient multiresolution structure for distributing and rendering gigantic point-sampled models. Computers and Graphics 28, 6, 815--826. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gu, X., Gortler, S. J., and Hoppe, H. 2002. Geometry images. In Proc. SIGGRAPH, J. Hughes, Ed., 335--361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Guthe, M., Balázs, A., and Klein, R. 2005. Gpu-based trimming and tessellation of nurbs and t-spline surfaces. ACM Transactions on Graphics 24, 3 (Aug.), 1016--1023. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hoppe, H. 1997. View-dependent refinement of progressive meshes. In SIGGRAPH 97 Conference Proceedings, Addison Wesley, T. Whitted, Ed., Annual Conference Series, ACM SIGGRAPH, 189--198. ISBN 0-89791-896-7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hu, L., Sander, P., and Hoppe, H. 2010. Parallel view-dependent level-of-detail control. IEEE Trans. on Visualization and Computer Graphic. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jovanova, B., Preda, M., and Preteux, F. 2008. Mpeg-4 part 25: A generic model for 3d graphics compression. In Proc. 3DTV, IEEE, 101--104.Google ScholarGoogle Scholar
  18. Kazhdan, M., Bolitho, M., and Hoppe, H. 2006. Poisson surface reconstruction. In SGP '06: Proceedings of the fourth Eurographics symposium on Geometry processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. 23, 3, 861--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lab, L., 2009. 1 billion hours, 1 billion dollars served: Second life celebrates major milestones for virtual worlds. http://lindenlab.com/pressroom/releases/22_09_09. Retrieved on 15 Sep. 2010.Google ScholarGoogle Scholar
  22. Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. Maps: Multiresolution adaptive parameterization of surfaces. Comp. Graph. Proc., 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Luebke, D., and Erikson, C. 1997. View-dependent simplification of arbitrary polygonal environments. In ACM Computer Graphics Proc., Annual Conference Series, (SIGGRAPH 97), 199--208. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Maglo, A., Lee, H., Lavoué, G., Mouton, C., Hudelot, C., and Dupont, F. 2010. Remote scientific visualization of progressive 3d meshes with x3d. In Proc. Web3D, 109--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Manuel M. Oliveira, F. P. 2005. An efficient representation for surface details. Tech. Rep. RP 351, Universidade Federal do Rio Grande, January.Google ScholarGoogle Scholar
  26. Niebling, F., Kopecki, A., and Becker, M. 2010. Collaborative steering and post-processing of simulations on hpc resources: Everyone, anytime, anywhere. In Proceedings of the 15th International Conference on Web 3D Technology, ACM, 101--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Oliveira, M. M., Bishop, G., and McAllister, D. 2000. Relief texture mapping. In Proceedings of the Computer Graphics Conference 2000 (SIGGRAPH-00), ACMPress, New York, S. Hoffmeyer, Ed., 359--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pietroni, N., Tarini, M., and Cignoni, P. 2010. Almost isometric mesh parameterization through abstract domains. IEEE Transactions on Visualization and Computer Graphics 16, 4, 621--635. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Policarpo, F., Oliveira, M. M., and Comba, J. L. D. 2005. Real-time relief mapping on arbitrary polygonal surfaces. ACM Trans. Graph 24, 3, 935. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Praun, E., and Hoppe, H. 2003. Spherical parametrization and remeshing. ACM Trans. Graph. 22, 3, 340--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sander, P. V., Wood, Z. J., Gortler, S. J., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry images. In Eurographics Symposium on Geometry Processing, 146--155. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Trans. Graph. 23, 3, 870--877. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision 2, 2, 105--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shiue, L.-J., Jones, I., and Peters, J. 2005. A realtime gpu subdivision kernel. ACM Transactions on Graphics 24, 3 (Aug.), 1010--1015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wang, L., Wang, X., Tong, X., Lin, S., Hu, S.-M., Guo, B., and Shum, H.-Y. 2003. View-dependent displacement mapping. ACM Trans. Graph. 22, 3, 334--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., and Shum, H.-Y. 2004. Generalized displacement maps. In Proceedings of the 2004 Eurographics Symposium on Rendering, Eurographics Association, D. Fellner and S. Spencer, Eds., 227--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Wu, J., and Kobbelt, L. 2002. Fast mesh decimation by multiple-choice techniques. In Proceedings of 7th International Fall Workshop on Vision, Modeling, and Visualization, 241--248.Google ScholarGoogle Scholar
  38. Xia, J., and Varshney, A. 1996. Dynamic view-dependent simplification for polygonal models. In IEEE Visualization '96 Proc., R. Yagel and G. Nielson, Eds., 327--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Yoon, S.-E., Salomon, B., Gayle, R., and Manocha, D. 2004. Quick-VDR: Interactive view-dependent rendering of massive models. Tech. Rep. TR04-011, Department of Computer Science, University of North Carolina - Chapel Hill, Apr. 12. Mon, 12 Apr 2004 17:34:34 UTC.Google ScholarGoogle Scholar
  40. Yoon, S., Gobbetti, E., Kasik, D., and Manocha, D. 2008. Real-time Massive Model Rendering, vol. 2 of Synthesis Lectures on Computer Graphics and Animation. Morgan and Claypool, August.Google ScholarGoogle Scholar

Index Terms

  1. Adaptive quad patches: an adaptive regular structure for web distribution and adaptive rendering of 3D models

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            Web3D '12: Proceedings of the 17th International Conference on 3D Web Technology
            August 2012
            190 pages
            ISBN:9781450314329
            DOI:10.1145/2338714

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 4 August 2012

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate27of71submissions,38%

            Upcoming Conference

            WEB3D '24
            The 29th International ACM Conference on 3D Web Technology
            September 25 - 27, 2024
            Guimarães , Portugal

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader