skip to main content
research-article

Analyzing and Visualizing Jump Performance Using Wireless Body Sensors

Published:01 August 2012Publication History
Skip Abstract Section

Abstract

Advancement in technology has led to the deployment of body sensor networks (BSN) to monitor and sense human activity in pervasive environments. Using multiple wireless on-body systems, such as physiological data monitoring and motion capture systems, body sensor network data consists of heterogeneous physiologic and motoric streams that form a multidimensional framework. In this article, we analyze such high-dimensional body sensor network data by proposing an efficient, multidimensional factor analysis technique for quantifying human performance and, at the same time, providing visualization for performances of participants in a low-dimensional space for easier interpretation.

References

  1. Abdi, H. 2003. Encyclopedia for Research Methods for the Social Sciences. SAGE, Thousand Oaks, CA, Chapter on Multivariate analysis, 699--702.Google ScholarGoogle Scholar
  2. Abdi, H. 2007. Encyclopedia for Research Methods for the Social Sciences. SAGE, Thousand Oaks, CA, Chapter on Metric multidimensional scaling, 598--605.Google ScholarGoogle Scholar
  3. Bai, J. and Ng, S. 2008. Large dimensional factor analysis. Found. Trends Econometrics 3, 2, 89--163.Google ScholarGoogle ScholarCross RefCross Ref
  4. Boca, A. D. and Park, D. 1994. Myoelectric signal recognition using fuzzy clustering andartificial neural networks in real time. In Proceedings of the IEEE International Conference on Neural Networks and the IEEE World Congress on Computational Intelligence. 3098--3103.Google ScholarGoogle Scholar
  5. Chan, F. H., Yang, Y.-S., Lam, F. K., Zhang, Y.-T., and Parker, P. 2000. Fuzzy EMG classification for prosthesis control. IEEE Trans. Rehab. Eng. 8, 3, 305--311.Google ScholarGoogle ScholarCross RefCross Ref
  6. Chaya, C., Perez-Hugalde, C., Judez, L., Wee, C., and Guinard, J. 2003. Use of the STATIS method to analyze time-intensity profiling data. Food Qual. Preference 15, 3--12.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chiu, C.-Y., Chao, S.-P., Wu, M.-Y., Yang, S.-N., and Lin, H.-C. 2004. Content-based retrieval for human motion data. J. Visual Commun. Image Rep. 446--466. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dien, S. L. and Pagés, J. 2003. Hierarchical multiple factor analysis: Application to the comparison of sensory profiles. Food Qual. Preference 14, 397--403.Google ScholarGoogle ScholarCross RefCross Ref
  9. Escofier, B. and Pagés, J. 1990. Multiple factor analysis. Computat. Stat. Data Anal. 18, 121--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Graupe, D., Salahi, J., and Kohn, K. 1982. Multifunction prosthesis and orthosis control via microcomputer identification of temporal patter differences in single-site myoelectric signals. J. Biomed. Eng. 4, 17--22.Google ScholarGoogle ScholarCross RefCross Ref
  11. Gupta, V., Suryanarayanan, S., and Reddy, N. 1997. Fractal analysis of surface EMG signals from the biceps. Int. J. Med. Info. 45, 3, 185--192.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hershler, C. and Milner, M. 1978. An optimality criterion for processing electromyographic (emg) signals relating to human locomotion. IEEE Trans. Biomed. Eng. 25, 5, 413--420.Google ScholarGoogle ScholarCross RefCross Ref
  13. Hudgins, B., Parker, P., and Scott, R. 1993. A new strategy for multifunction myoelectric control. IEEE Trans. Biomed. Eng. 4, 1, 82--94.Google ScholarGoogle ScholarCross RefCross Ref
  14. Keogh, E., Palpanas, T., Zordan, V. B., Gunopulos, D., and Cardle, M. 2004. Indexing large human-motion databases. In Proceedings of the 30th International Conference on Very Large Databases. 780--791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lavit, C., Escoufier, Y., Sabatier, R., and Traissac, P. 1994. The ACT (STATIS method). Comput. Stat. Data Anal. 18, 1, 97--119. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Liu, F., Zhuang, Y., Wu, F., and Pan, Y. 2003. 3D motion retrieval with motion index tree. Comput. Vision Image Understand. 92, 265--284. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Meyners, M., Kunert, J., and Qannari, E. 2000. Comparing generalized procrustes analysis and statis. Food Qual. Preference 11, 77--83.Google ScholarGoogle ScholarCross RefCross Ref
  18. Moustafa, R. and Wegman, E. 2002. On some generalization to parallel coordinate plot. In Seeing a Million, A Data Visualization Workshop. Rain am Lech (nr.), Germany.Google ScholarGoogle Scholar
  19. Müller, M., Röder, T., and Clausen, M. 2005. Efficient content-based retrieval of motion capture data. ACM Trans. Graph. 24, 677--685. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pradhan, G., Engineer, N., Nadin, M., and Prabhakaran, B. 2007. Integration of motion capture and EMG data for classifying the human motions. In Proceedings of the ICDE Workshop on Ambient Intelligence, Media, and Sensing. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pradhan, G., Li, C., and Prabhakaran, B. 2007. Hierarchical indexing structure for 3d human motions. In Proceedings of the International ACM Multimedia Modeling Conference. 386--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pradhan, G. N. and Prabhakaran, B. 2008. Analysis of human performance using physiological data streams. In Proceedings of the 3rd International Conference on Body Area Networks. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Qannari, E., Wakeling, I., and MacFie, H. 1995. A hierarchy of models for analysing sensory data. Food Qual. Preference 6, 309--314.Google ScholarGoogle ScholarCross RefCross Ref
  24. Raez, M., Hussain, M., and Mohd-Yasin, F. 2006. Techniques of EMG signal analysis: Detection, processing, classification and applications. Bio. Proc. Online 8, 11--35.Google ScholarGoogle ScholarCross RefCross Ref
  25. Robert, P. and Escoufier, Y. 1976. A unifying tool for linear multivariate statistical methods: The rv-coefficient. Appl. Stat. 25, 257--265.Google ScholarGoogle ScholarCross RefCross Ref
  26. Schlich, P. 1996. Defining and validating assessor compromises about product distances and attribute correlations. Multivariate Anal. Data Sensory Sci. 6, 229--306.Google ScholarGoogle Scholar
  27. Shiavi, R., Bourne, J., and Holland, A. 1986. Automated extraction of activity features in linear envelopes of locomotor electromyographic patterns. IEEE Trans. Biomed. Eng. 33, 6, 594--600.Google ScholarGoogle ScholarCross RefCross Ref
  28. Stanimirova, I., Walczak, B., Massart, D., Simeonov, V., Saby, C., and Crescenzo, E. D. 2004. STATIS, a three-way method for data analysis: Application to environmental data. Chemometrics Intell. Lab. Syst. 73, 219--233.Google ScholarGoogle ScholarCross RefCross Ref
  29. Vivien, M. and Sabatier, R. 2004. A generalization of STATIS-ACT strategy: DO-ACT for two multiblocks tables. Comput. Stat. Data Anal. 46, 155--171.Google ScholarGoogle ScholarCross RefCross Ref
  30. Winter, D. 1984. Pathologic gait diagnosis with computer averaged electromyographic profiles. Arch. Phys. Med. Rehab. 65, 393--398.Google ScholarGoogle Scholar
  31. Yang, K. and Shahabi, C. 2005. Multilevel distance-based index structure for multivariate time series. In Proceedings of the 12th International Symposium on Temporal Representation and Reasoning (TIME). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yu, C., Ooi, B. C., Tan, K.-L., and Jagadish, H. V. 2001. Indexing the distance: An efficient method to knn processing. In Proceedings of the International Conference on Very Large Databases (VLDB’01). 421--430. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zardoshti-Kermani, M., Wheeler, B., Badie, K., and Hashemi, R. 1995. EMG feature evaluation for movement control of upper extremity prostheses. IEEE Trans. Rehab. Eng. 3, 4, 324--333.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Analyzing and Visualizing Jump Performance Using Wireless Body Sensors

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Embedded Computing Systems
          ACM Transactions on Embedded Computing Systems  Volume 11, Issue S2
          Special Section on CAPA'09, Special Section on WHS'09, and Special Section VCPSS' 09
          August 2012
          396 pages
          ISSN:1539-9087
          EISSN:1558-3465
          DOI:10.1145/2331147
          Issue’s Table of Contents

          Copyright © 2012 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 August 2012
          • Accepted: 1 September 2010
          • Revised: 1 June 2010
          • Received: 1 November 2009
          Published in tecs Volume 11, Issue S2

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader