skip to main content
research-article

Solid simulation with oriented particles

Published:25 July 2011Publication History
Skip Abstract Section

Abstract

We propose a new fast and robust method to simulate various types of solid including rigid, plastic and soft bodies as well as one, two and three dimensional structures such as ropes, cloth and volumetric objects. The underlying idea is to use oriented particles that store rotation and spin, along with the usual linear attributes, i.e. position and velocity. This additional information adds substantially to traditional particle methods. First, particles can be represented by anisotropic shapes such as ellipsoids, which approximate surfaces more accurately than spheres. Second, shape matching becomes robust for sparse structures such as chains of particles or even single particles because the undefined degrees of freedom are captured in the rotational states of the particles. Third, the full transformation stored in the particles, including translation and rotation, can be used for robust skinning of graphical meshes and for transforming plastic deformations back into the rest state.

Skip Supplemental Material Section

Supplemental Material

tp090_11.mp4

mp4

46.6 MB

References

  1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. Proceedings of ACM Siggraph, 43--54. Google ScholarGoogle Scholar
  2. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Transactions on Graphics 26, 3 (July), 16:1--16:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Becker, M., Ihmsen, M., and Teschner, M. 2009. Corotated sph for deformable solids. In Eurographics Workshop on Natural Phenomena, 27--34. Google ScholarGoogle Scholar
  4. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete Viscous Threads. SIGGRAPH (ACM Transactions on Graphics). Google ScholarGoogle Scholar
  5. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévêque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Transaction on Graphics 25, 3 (July), 1180--1187. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bertails, F. 2009. Linear time super-helices. Computer Graphics Forum 28, 2 (Apr.), 417--426.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In ACM SIGGRAPH Symposium on Computer Animation, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gerszewski, D., Bhattacharya, H., and Bargteil, A. W. 2009. A point-based method for animating elastoplastic solids. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, ACM, New York, NY, USA, SCA '09, 133--138. Google ScholarGoogle Scholar
  9. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., and Grinspun, E. 2007. Efficient Simulation of Inextensible Cloth. SIGGRAPH (ACM Transactions on Graphics) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA '03, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jansson, J., and Vergeest, J. S. M. 2003. Combining deformable- and rigid-body mechanics simulation. In In The Visual Computer, SpringerVerlag, 280--290.Google ScholarGoogle Scholar
  12. Kavan, L., Collins, S., Zara, J., and O'Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Press, New York, NY, USA, vol. 27, 105. Google ScholarGoogle Scholar
  13. Lenoir, J., and Fonteneau, S. 2004. Mixing deformable and rigid-body mechanics simulation. In Proceedings of the Computer Graphics International, IEEE Computer Society, Washington, DC, USA, 327--334. Google ScholarGoogle Scholar
  14. Martin, S., Kaufmann, P., Botsch, M., Wicke, M., and Gross, M. 2008. Polyhedral finite elements using harmonic basis functions. Computer Graphics Forum 27, 5, 1521--1529. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 3, 39:1--39:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Müller, M., and Gross, M. H. 2004. Interactive virtual materials. In Graphics Interface 2004, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In the ACM SIGGRAPH 2004 Symposium on Computer Animation, 141--151. Google ScholarGoogle Scholar
  18. Müller, M., Heidelberger, B., and Teschner, M. 2005. Meshless deformations based on shape matching. In Proc. SIGGRAPH 2005, 471--478. Google ScholarGoogle Scholar
  19. Müller, M., Hennix, B. H. M., and Ratcliff, J. 2006. Position based dynamics. Proceedings of Virtual Reality Interactions and Physical Simulations, 71--80.Google ScholarGoogle Scholar
  20. O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Computer Graphics (SIGGRAPH '99 Proceedings), ACM Press, New York, 137--146. Google ScholarGoogle Scholar
  21. O'Brien, J. F., Zordan, V. B., and Hodgins, J. K. 1997. Combining active and passive simulations for secondary motion. In Proceedings of SIGGRAPH 1997, Technical Sketch. Google ScholarGoogle Scholar
  22. O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. In Computer Graphics (SIGGRAPH 2002 Proceedings), 291--294. Google ScholarGoogle Scholar
  23. Pai, D. K. 2002. STRANDS: Interactive simulation of thin solids using Cosserat models. Computer Graphics Forum 21, 3 (Sept.), 347--352.Google ScholarGoogle ScholarCross RefCross Ref
  24. Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24 (July), 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Proceedings of Graphics Interface, 147--154.Google ScholarGoogle Scholar
  26. Rivers, A. R., and James, D. L. 2007. Fastlsm: Fast lattice shape matching for robust real-time deformation. In ACM Transactions on Graphics (Proc. SIGGRAPH 2007), vol. 26(3), 82:1--82:6. Google ScholarGoogle Scholar
  27. Schmedding, R., and Teschner, M. 2008. Inversion handling for stable deformable modeling. In The Visual Computer, vol. 24, 625--633. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proceedings of the 2007 Symposium on Computer Animation, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Spillmann, J., and Teschner, M. 2007. CORDE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of the 2007 Symposium on Computer Animation, Eurographics Association, 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Stam, J. 2009. Nucleus: Towards a uni?ed dynamics solver for computer graphics. In In IEEE International Conference on Computer-Aided Design and Computer Graphics, 1--11.Google ScholarGoogle Scholar
  31. Szeliski, R., and Tonnesen, D. 1992. Surface modeling with oriented particle systems. SIGGRAPH Comput. Graph. 26 (July), 185--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Teschner, M., Heidelberger, B., Müller, M., Pomeranerts, D., and Gross, M. 2003. Optimized spatial hashing for collision detection of deformable objects. Proc. Vision, Modeling, Visualization VMV 2003, 47--54.Google ScholarGoogle Scholar
  33. Twigg, C., and Kacic-Alesic, Z. 2010. Point cloud glue: Constraining simulations using the procrustes transform. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28 (September), 105:1--105:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics 27, 3 (Aug.), 47:1--47:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yu, J., and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Solid simulation with oriented particles

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 30, Issue 4
            July 2011
            829 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2010324
            Issue’s Table of Contents

            Copyright © 2011 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 25 July 2011
            Published in tog Volume 30, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader