skip to main content
10.1145/1936652.1936657acmconferencesArticle/Chapter ViewAbstractPublication PagesissConference Proceedingsconference-collections
research-article

Multi-point interactions with immersive omnidirectional visualizations in a dome

Published:07 November 2010Publication History

ABSTRACT

This paper describes an interactive immersive experience using mid-air gestures to interact with a large curved display: a projected dome. Our Pinch-the-Sky Dome is an immersive installation where several users can interact simultaneously with omnidirectional data using freehand gestures. The system consists of a single centrally-located omnidirectional projector-camera unit where the projector is able to project an image spanning the entire 360 degrees and a camera is used to track gestures for navigation of the content. We combine speech commands with freehand pinch and clasping gestures and infra-red laser pointers to provide a highly immersive and interactive experience to several users inside the dome, with a very wide field of view for each user. The interactive applications include: 1) the astronomical data exploration, 2) social networking 3D graph visualizations, 3) immersive panoramic images, 4) 360 degree video conferencing, 5) a drawing canvas, and 6) a multi-user interactive game. Finally, we discuss the user reactions and feedback from two demo events where more than 1000 people had the chance to experience our work.

Skip Supplemental Material Section

Supplemental Material

p19-benko.wmv

wmv

30.9 MB

References

  1. Benko, H. 2009. Beyond Flat Surface Computing: Challenges of Depth-Aware and Curved Interfaces. In Proc. ACM MultiMedia '09. p. 935--944. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Benko, H. and Wilson, A. D. 2010. Pinch-the-sky dome: freehand multi-point interactions with immersive omni-directional data. Extended Abstracts ACM SIGCHI '10. p. 3045--3050. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Benko, H., Wilson, A., and Balakrishnan, R. 2008. Sphere: Multi-Touch Interactions on a Spherical Display. In Proc. ACM UIST '08. p. 77--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Buxton, W. 1990. A three-state model of graphical input. In Proc. IFIP Tc13 Third International Conference on Human-Computer interaction (August 27--31, 1990). p. 449--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cruz-Neira, C., Sandin, D. J., and DeFanti, T. A. 1993. Surround-screen projection-based virtual reality: The design and implementation of the CAVE. In Proc. ACM SIGGRAPH '93. p. 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Emmart, C. 2001. Tools and Techniques for Realtime Dome Production and Education. Computer Graphics for Large Scale Immersive Theaters. SIGGRAPH '01 Course Notes.Google ScholarGoogle Scholar
  7. Fitzmaurice, G., Khan, A., Buxton, W., Kurtenbach, G., and Balakrishnan, R. 2003. Sentient data access via a diverse society of devices. ACM Queue. p. 53--62. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fukuchi, K., Sato, T., Mamiya, H., and Koike, H. 2010. Pac-pac: pinching gesture recognition for tabletop entertainment system. In Proc. ACM AVI '10. p. 267--273. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gaitatzes, A., Papaioannou, G., Christopoulos, D., and Zyba, G. 2006. Media productions for a dome display system. In Proc. ACM VRST '06. p. 261--264. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gray, J. and Szalay, A. 2002. The World Wide Telescope: An Archetype for Online Science. Microsoft Research Technical Report MSR-TR-2002-75. June '02.Google ScholarGoogle Scholar
  11. Hilliges, O., Izadi, S., Wilson, A. D., Hodges, S., Garcia-Mendoza, A., and Butz, A. 2009. Interactions in the Air: Adding Further Depth to Interactive Tabletops. In Proc. ACM UIST '09. p. 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Hua, H., Brown, L. D., and Gao, C. 2004. Scape: Supporting Stereoscopic Collaboration in Augmented and Projective Environments. IEEE Computer Graphics and Applications. 24, 1 (Jan. 2004). p. 66--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kaiser, E., Olwal, A., McGee, D., Benko, H., Corradini, A., Li, X., Cohen, P., and Feiner, S. 2003. Mutual Disambiguation of 3D Multimodal Interaction in Augmented and Virtual Reality. In Proc. ICMI '03. p. 12--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Krueger, M. W., Gionfriddo, T., and Hinrichsen, K. 1985. VIDEOPLACE---an artificial reality. SIGCHI Bull. 16, 4 (Apr. '85). p. 35--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. LaViola, J. 2000. MSVT: A Virtual Reality-Based Multimodal Scientific Visualization Tool. In Proc. IASTED International Conference on Computer Graphics and Imaging. p. 1--7.Google ScholarGoogle Scholar
  16. Magnor, M., Sen, P., Kniss, J., Angel, E., and Wenger, S. 2010. Progress in Rendering and Modeling for Digital Planetariums. In Proc. of EUROGRAPHICS '10.Google ScholarGoogle Scholar
  17. Matsushita, N. and Rekimoto, J. 1997. HoloWall: Designing a Finger, Hand, Body, and Object Sensitive Wall. In Proc. ACM UIST '99. p. 209--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mapes, D. P. and Moshell, J. M. 1995. A two-handed interface for object manipulation in virtual environments. PRESENCE: Teleoperators and Virtual Environments, 4(4). p. 403--416.Google ScholarGoogle Scholar
  19. Myers, B. A., Bhatnagar, R., Nichols, J., Peck, C. H., Kong, D., Miller, R., and Long, A. C. 2002. Interacting at a distance: measuring the performance of laser pointers and other devices. In Proc. ACM SIGCHI '02. p. 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Oh, J.-Y. and Stuerzlinger, W. 2002. Laser Pointers as Collaborative Pointing Devices, In Proc. Graphics Interface '02. p. 141--149.Google ScholarGoogle Scholar
  21. Olsen, D. R. and Nielsen, T. 2001. Laser pointer Interaction. In Proc. ACM SIGCHI '01. p. 17--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pinhanez, C. S. 2001. The Everywhere Displays Projector: A Device to Create Ubiquitous Graphical Interfaces. In Proc. UBICOMP '01. p. 315--331. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Poupyrev, I., Billinghurst, M., Weghorst, S., and Ichikawa, T. 1996. The go-go interaction technique: non-linear mapping for direct manipulation in VR. In Proc. ACM UIST '96. p. 79--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., and Fuchs, H. 1998. The Office of the Future: A Unified Approach to Image-Based Modeling and Spatially Immersive Displays. In Proc. ACM SIGGRAPH '98. p. 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sato, Y., Saito, M. and Koike, H. 2001. Real-time input of 3D pose and gestures of a user's hand and its applications for HCI. In. Proc. IEEE VR '01. p. 79--86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shoemaker, G., Tang, A., and Booth, K. S. 2007. Shadow reaching: a new perspective on interaction for large displays. In Proc. ACM UIST '07. p. 53--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Simon, A. 2005. First-person experience and usability of co-located interaction in a projection-based virtual environment. In Proc. ACM VRST '05. p. 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Simon, A. and Göbel, M. 2002. The i-Cone -- A Panoramic Display System for Virtual Environments. In Proc. Pacific Conference on Computer Graphics and Applications. p. 3--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Stanney, K. M., Mourant, R. R., and Kennedy, R. S. 1998. Human Factors Issues in Virtual Environments: A Review of the Literature. Presence 7(4). p. 327--351. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wilson, A. 2006. Robust Computer Vision-Based Detection of Pinching for One and Two-Handed Gesture Input. In Proc. ACM UIST '06. p. 255--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wilson, A. 2007. Depth-Sensing Video Cameras for 3D Tangible Tabletop Interaction. In Proc. IEEE TABLETOP '07. p. 201--204.Google ScholarGoogle ScholarCross RefCross Ref
  32. Wren, C., Azarbayejani, A., Darrell, T., and Pentland, A. 1997. Pfinder: real-time tracking of the human body. IEEE Trans. PAMI, 19 (7). p. 780--785. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yilmaz, A., Javed, O., and Shah, M. 2006. Object tracking: A survey. ACM Computing Surveys. 38(4). (Dec. '06), Article #13. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multi-point interactions with immersive omnidirectional visualizations in a dome

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ITS '10: ACM International Conference on Interactive Tabletops and Surfaces
        November 2010
        327 pages
        ISBN:9781450303996
        DOI:10.1145/1936652

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 November 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate119of418submissions,28%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader