skip to main content
10.1145/1394281.1394299acmconferencesArticle/Chapter ViewAbstractPublication PagesapgvConference Proceedingsconference-collections
research-article

Perception-motivated interpolation of image sequences

Published:09 August 2008Publication History

ABSTRACT

We present a method for image interpolation which is able to create high-quality, perceptually convincing transitions between recorded images. By implementing concepts derived from human vision, the problem of a physically correct image interpolation is relaxed to an image interpolation that is perceived as physically correct by human observers. We find that it suffices to focus on exact edge correspondences, homogeneous regions and coherent motion to compute such solutions. In our user study we confirm the visual quality of the proposed image interpolation approach. We show how each aspect of our approach increases the perceived quality of the interpolation results, compare the results obtained by other methods and investigate the achieved quality for different types of scenes.

References

  1. Baker, S., and Matthews, I. 2004. Lucas-Kanade 20 Years On: A unifying framework. International Journal of Computer Vision 56, 3, 221--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barron, J., Fleet, D., and Beauchemin, S. 1994. Performance of Optical Flow Techniques. International Journal of Computer Vision 12, 1, 43--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Beier, T., and Neely, S. 1992. Feature-based image metamorphosis. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Belongie, S., Malik, J., and Puzicha, J. 2001. Matching Shapes. In Proc. of the IEEE International Conference on Computer Vision (ICCV), 454--461.Google ScholarGoogle Scholar
  5. Bertsekas, D. 1992. Auction algorithms for network flow problems: A tutorial introduction. Computational Optimization and Applications 1, 7--66.Google ScholarGoogle ScholarCross RefCross Ref
  6. Buehler, C., Bosse, M., McMillan, L., Gortler, S., and Cohen, M. 2001. Unstructured lumigraph rendering. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 425--432. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Canny, J. 1986. A Computational Approach To Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679--714. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Carranza, J., Theobalt, C., Magnor, M., and Seidel, H. P. 2003. Free-viewpoint video of human actors. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 569--577. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, S., and Williams, L. 1993. View interpolation for image synthesis. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 279--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Debevec, P., Borshukov, G., and Yu, Y. 1998. Efficient view-dependent image-based rendering with projective texture-mapping. In Proc. Eurographics Rendering Workshop (EGRW), 105--116.Google ScholarGoogle Scholar
  11. Felzenszwalb, P., and Huttenlocher, D. 2004. Efficient Graph-Based Image Segmentation. International Journal of Computer Vision 59, 167--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fu, M. F., Au, O., and Chan, W. C. 2002. Temporal interpolation using wavelet domain motion estimation and motion compensation. IEEE Conference on Image Processing (ICIP), 393--396.Google ScholarGoogle Scholar
  13. Gibson, J. 1955. The Perception of the Visual World. Cambridge UP.Google ScholarGoogle Scholar
  14. Gortler, S., Grzeszczuk, R., Szeliski, R., and Cohen, M. 1996. The Lumigraph. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Heeger, D., Boynton, G., Demb, J., Seidemann, E., and Newsome, W. 1999. Motion opponency in visual cortex. J. Neurosci. 19 (Aug), 7162--7174.Google ScholarGoogle ScholarCross RefCross Ref
  16. Horn, B., and Schunck, B. 1981. Determining Optical Flow. Artificial Intelligence 17, 185--203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Isaksen, A., McMillan, L., and Gortler, S. 2000. Dynamically reparameterized light fields. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 297--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jain, J., and Jain, A. 1981. Displacement Measurement and Its Application in Interframe Image Coding. IEEE Transactions on Communications 29, 12, 1799--1808.Google ScholarGoogle ScholarCross RefCross Ref
  19. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lucas, B., and Kanade, T. 1981. An iterative image registration technique with an application to stereo vision. In Proc. Seventh International Joint Conference on Artificial Intelligence, 674--679.Google ScholarGoogle Scholar
  21. Mark, W., McMillan, L., and Bishop, G. 1997. Post-Rendering 3D Warping. In Proc. of the Symposium on Interactive 3D Graphics, 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Marr, D., and Hildreth, E. 1980. Theory of Edge Detection. Proc. of the Royal Society of London. Series B, Biological Sciences 207, 187--217.Google ScholarGoogle ScholarCross RefCross Ref
  23. Matusik, W., and Pfister, H. 2004. 3D TV: A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 814--824. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Matusik, W., Buehler, C., Raskar, R., Gortler, S., and McMillan, L. 2000. Image-based visual hulls. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 369--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. McMillan, L., and Bishop, G. 1995. Plenoptic modeling: An image-based rendering system. Proc. ACM Conference on Computer Graphics (SIGGRAPH) (Aug.), 39--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Myszkowski, K., Tawara, T., Akamine, H., and Seidel, H.-P. 2001. Perception-guided global illumination solution for animation rendering. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 221--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. O'Sullivan, C., Howlett., S., Mcdonnell, R., Y. Morvan, and K. O'Conor, K. 2004. Perceptually adaptive graphics. In Eurographics, State-of-the-art-Report 6.Google ScholarGoogle Scholar
  28. Qian, N., and Andersen, R. 1997. A physiological model for motion-stereo integration and a unified explanation of Pulfrich-like phenomena. Vision Res. 37 (Jun), 1683--1698.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: Towards a new standard for image fidelity. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 654--663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Reichardt, W. 1961. Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In Sensory communication, W. Rosenblith, Ed. New York: MIT Press-Willey, 303--317.Google ScholarGoogle Scholar
  31. Ren, X., and Malik, J. 2003. Learning a classification model for segmentation. In Proc. of the IEEE International Conference on Computer Vision (ICCV), 10--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ruzon, M., and Tomasi, C. 1999. Color Edge Detection with the Compass Operator. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 160--166.Google ScholarGoogle Scholar
  33. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 533--540. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Seitz, S. M., and Dyer, C. R. 1996. View morphing. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Snavely, N., Seitz, S., and Szeliski, R. 2006. Photo tourism: exploring photo collections in 3d. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 835--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tourapis, A., Cheong, H., Liou, M., and Au, O. 2001. Temporal Interpolation of Video Sequences Using Zonal Based Algorithms. In IEEE Conference on Image Processing (ICIP), 895--898.Google ScholarGoogle Scholar
  37. Vangorp, P., Laurijssen, J., and Dutr, P. 2007. The influence of shape on the perception of material reflectance. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Vedula, S., Baker, S., and Kanade, T. 2005. Image based spatio-temporal modeling and view interpolation of dynamic events. ACM Transactions on Graphics 24, 2 (April), 240--261. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wallach, H. 1935. Ueber visuell wahrgenommene bewe-gungsrichtung. Psychologische Forschung 20, 325--380.Google ScholarGoogle ScholarCross RefCross Ref
  40. Wallraven, C., Bülthoff, H. H., Fischer, J., Cunningham, D. W., and Bartz, D. 2007. The evaluation of real-world and computer-generated stylized facial expressions. ACM Transactions on Applied Perception 4, 3, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wertheimer, M. 1938. Laws of organization in perceptual forms. In A Source Book of Gestalt Psychology, W. Ellis, Ed. Kegan Paul, Trench, Trubner & Co. Ltd., 71--88.Google ScholarGoogle Scholar
  42. Wolberg, G. 1998. Image morphing: A survey. Visual Computer 14, 360--372.Google ScholarGoogle ScholarCross RefCross Ref
  43. Wood, D., Azuma, D., Aldinger, K., Curless, B., Duchamp, T., Salesin, D., and Stuetzle, W. 2000. Surface light fields for 3D photography. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 287--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Zitnick, C., Kang, S., Uyttendaele, M., Winder, S., and Szeliski, R. 2004. High-quality video view interpolation using a layered representation. In Proc. ACM Conference on Computer Graphics (SIGGRAPH), 600--608. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Perception-motivated interpolation of image sequences

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            APGV '08: Proceedings of the 5th symposium on Applied perception in graphics and visualization
            August 2008
            209 pages
            ISBN:9781595939814
            DOI:10.1145/1394281

            Copyright © 2008 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 9 August 2008

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate19of33submissions,58%

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader