skip to main content
10.1145/1341012.1341027acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Dynamics-aware similarity of moving objects trajectories

Published:07 November 2007Publication History

ABSTRACT

This work addresses the problem of obtaining the degree of similarity between trajectories of moving objects. Typically, a Moving Objects Database (MOD) contains sequences of (location, time) points describing the motion of individual objects, however, they also implicitly storethe velocity -- an important attribute describing the dynamics the motion. Our main goal is to extend the MOD capability with reasoning about how similar are the trajectories of objects, possibly moving along geographically different routes. We use a distance function which balances the lack of temporal-awareness of the Hausdorff distance with the generality (and complexity of calculation) of the Fréchet distance. Based on the observation that in practice the individual segments of trajectories are assumed to have constant speed, we provide efficient algorithms for: (1) optimal matching between trajectories; and (2) approximate matching between trajectories, both under translations and rotations, where the approximate algorithm guarantees a bounded error with respect to the optimal one.

References

  1. Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient similarity search in sequence databases. In FODO, 1993. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. A. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar curves. Algorithmica, 38, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. H. Alt, O. Aicholzer, and G. Rote. Matching shapes with a reference point. In Symp. Computational Geometry, 1994. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching plannar graphs. Journal of Algorithms, 49, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and approximation. In Handbook of Computational Geometry, 1999.Google ScholarGoogle Scholar
  6. H. Alt, C. Knauer, and C. Wenk. Matching polygonal curves with respect to the fréchet distance. In STACS, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and C. Wenk. Fréchet distance for curves, revisited. In ESA, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. F. Aurenhammer. Voronoi diagrams - a survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3), 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. P. Bakalov, M. Hadjielefteriou, and V. Tsotras. Time relaxed spatiotemporal trajectory joins. In GIS, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Thomas Brinkhoff. A framework for generating network-based moving objects. GeoInformatica, 6(2), 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal data reduction with deterministic error bounds. VLDB Journal, 15(3), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geometry: algorithms and applications. Springer-Verlag New York, Inc., 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. S. E. Dreyfus. An appraisal of some shortest -- path algorithms. Operations Research, 17(3), 1969.Google ScholarGoogle Scholar
  14. C. du Mouza and R. Rigaux. Multi-scale classification of moving objects trajectories. In SSDBM, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Efrat, Q. Fan, and S. Venkatasubramanian. Curve matching, time warping, and light fields: New algorithms for computing similarity between curves. J. Mathematic Imaging and Vision, 2007. to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. T. Eiter and H. Mannila. Distance measures for point sets and their computation. Acta Inf., 34(2), 1997.Google ScholarGoogle Scholar
  17. M. T. Goodrich, J. S. B. Mitchell, and M. W. Orletsky. Approximate geometric pattern matching under rigid motions. IEEE Trans. Pattern Anal. Mach. Intell., 21(4), 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. R. H. Güting, V. T. de Almeida, and Z. Ding. Modeling and querying moving objects in networks. VLDB J., 15(2), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. R. H. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.Google ScholarGoogle Scholar
  20. M. Hadjielefteriou, G. Kollios, P. Bakalov, and V. Tsotras. Complex spatio-temporal pattern queries. In VLDB, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. P. J. Heffernan and S. Schirra. Approximate decision algorithms for point set congruence. In Symp. Computational Geometry, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. K. Imai, S. Sumino, and H. Imai. Minimax geometric fitting of two corresponding sets of points and dynamic furthest voronoi diagrams. IEICE Trans. Inf. and Syst., E81-D(11), 1998.Google ScholarGoogle Scholar
  23. Forbes Online Issue http://www.forbes.com/home, April 2006.Google ScholarGoogle Scholar
  24. F. P. Preparata and M. I. Shamos. Computational Geometry: an introduction. Springer Verlag, 1985. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. J. Schiller and A. Voisard. Location-based Services. Morgan Kaufmann Publishers, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. M. Sharir and P. K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving objects databases. ACM TODS, 29(3), 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Vlachos, M. Hadjielefteriou, D. Gunopulos, and E. Keogh. Indexing multidimensional time-series. VLDB Journal, 15(1), 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Vlachos, G. Kollios, and D. Gunopulos. Elastic translation invariant matching of trajectories. Machine Learning, 58, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed: Localizing global curve-matching algorithms. In SSDBM, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dynamics-aware similarity of moving objects trajectories

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Other conferences
        GIS '07: Proceedings of the 15th annual ACM international symposium on Advances in geographic information systems
        November 2007
        439 pages
        ISBN:9781595939142
        DOI:10.1145/1341012

        Copyright © 2007 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 November 2007

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate220of1,116submissions,20%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader