skip to main content
10.1145/1276958.1277082acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
Article

Global multiobjective optimization via estimation of distribution algorithm with biased initialization and crossover

Authors Info & Claims
Published:07 July 2007Publication History

ABSTRACT

Multiobjective optimization problems with many local Pareto fronts is a big challenge to evolutionary algorithms. In this paper, two operators, biased initialization and biased crossover, are proposed to improve the global search ability of RM-MEDA, a recently proposed multiobjective estimation of distribution algorithm. Biased initialization inserts several globally Pareto optimal solutions into the initial population; biased crossover combines the location information of some best solutions found so far and globally statistical information extracted from current population. Experiments have been conducted to study the effects of these two operators.

References

  1. P. A. N. Bosman and D. Thierens. The naive MIDEA: A baseline multi-objective EA. In Third International Conference on Evolutionary Multi--Criterion Optimization (EMO 2005), LNCS, Vol.3410, pages 428--442, Guanajuato, Mexico, 2005. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. C. A. Coello Coello, D. A. van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms for Solving Multi--Objective Problems. Kluwer Academic Publishers, New York, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. Deb. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, 7(3):205C230, 1999.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, LTD, Baffins Lane, Chichester, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA--II. IEEE Transactions on Evolutionary Computation, 6(2):182--197, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for Evolutionary Multiobjective Optimization. In Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pages 105--145. Springer, USA, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  7. L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and interval--schemata. In Foundation of Genetic Algorithms 2, pages 187--202, San Mateo, CA, 1993. Morgan Kaufmann.Google ScholarGoogle Scholar
  8. C. Grosan. Multiobjective adaptive representation evolutionary algorithm (marea) -- a new evolutionary algorithm for multiobjective optimization. In Applied Soft Computing Technologies: The Challenge of Complexity, Advances in Soft Computing, volume 34 of Advances in Soft Computing, pages 113--121.Springer--Verlag, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. T. Hanne. Global multiobjective optimization using evolutionary algorithms. Journal of Heuristics, 6(3):347--360, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. C. Igel, N. Hansen, and S. Roth. Covariance matrix adaptation for multi--objective optimization. Evolutioanry Computation, 2007. in press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. N. Kambhatla and T. K. Leen. Dimension reduction by local principal component analysis. Neural Computation, 9(7):1493--1516, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. M. Lahanas, E. Schreibmann, N. Milickovic, and D. Baltas. Intensity modulated beam radiation therapy dose optimization with multiobjective evolutionary algorithms. In Second International Conference on Evolutionary Multi--Criterion Optimization (EMO 2003), LNCS, Vol.2632, pages 648--661, Faro, Portugal, 2003. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  13. P. Larrañaga and J. A. Lozano, editors. Estimation of Distribution Algorithms : A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Norwell, MA, USA, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. M. Laumanns and J. Očenášek. Bayesian optimization algorithms for multi--objective optimization. In Parallel Problem Solving From Nature (PPSN VII), LNCS, Vol.2439, pages 298--307, Granada,Spain, 2002. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Y. W. Leung and Y. Wang. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 5(1):41--53, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. K. Miettinen. Nonlinear Multiobjective Optimization, volume 12 of Kluwer's International Series in Operations Research & Management Science. Kluwer Academic Publishers, 1999.Google ScholarGoogle Scholar
  17. N. Milickovic, M. Lahanas, D. Baltas, and N. Zamboglou. Comparison of evolutionary and deterministic multiobjective algorithms for dose optimization in brachytherapy. In First International Conference on Evolutionary Multi--Criterion Optimization (EMO 2001), LNCS, Vol.1993, pages 167--180, Zurich, Switzerland, 2001. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. T. Okabe, Y. Jin, B. Sendhoff, and M. Olhofer. Voronoi-based estimation of distribution algorithm for multi--objective optimization. In Proceedings of the Congress on Evolutionary Computation (CEC 2004), pages 1594--1601, Portland, Oregon, USA, 2004. IEEE Press.Google ScholarGoogle ScholarCross RefCross Ref
  19. L. Paquete and T. Stüzle. A two-phase local search for the biobjective traveling salesman problem. In Second International Conference on Evolutionary Multi--Criterion Optimization (EMO 2003), LNCS, Vol.2632, pages 479--493, Faro, Portugal, 2003. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  20. M. Pelikan, K. Sastry, and D. Goldberg. Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, volume 33 of Studies in Computational Intelligence, chapter Multiobjective Estimation of Distribution Algorithms. Springer, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. J. T. Tsai, T. K. Liu, and J. H. Chou. Hybrid taguchi-genetic algorithm for global numerical optimization. IEEE Transactions on Evolutionary Computation, 8(4):365--377, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Z. Tu and Y. Lu. A robust stochastic genetic algorithm (StGA) for global numerical optimization. IEEE Transactions on Evolutionary Computation, 8(5):456--470, 2004.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Q. Zhang and H. Li. A multi-objective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007. in press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Q. Zhang, J. Sun, and E. Tsang. Evolutionary algorithm with the guided mutation for the maximum clique problem. IEEE Transactions on Evolutionary Computation, 9(2):1--9, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Q. Zhang, J. Sun, E. Tsang, and J. Ford. Hybrid stimation of distribution algorithm for global optimisation. Engineering Computations, 21(1):91--107, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  26. Q. Zhang, A. Zhou, and Y. Jin. RM-MEDA: A regularity model based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation, 2007. in press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. A. Zhou, Q. Zhang, Y. Jin, E. Tsang, and T. Okabe. A model-based evolutionary algorithm for bi--objective optimization. In Proceedings of the Congress on Evolutionary Computation (CEC 2005), pages 2568--2575, Edinburgh, U.K, 2005. IEEE Press.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Global multiobjective optimization via estimation of distribution algorithm with biased initialization and crossover

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          GECCO '07: Proceedings of the 9th annual conference on Genetic and evolutionary computation
          July 2007
          2313 pages
          ISBN:9781595936974
          DOI:10.1145/1276958

          Copyright © 2007 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 July 2007

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • Article

          Acceptance Rates

          GECCO '07 Paper Acceptance Rate266of577submissions,46%Overall Acceptance Rate1,669of4,410submissions,38%

          Upcoming Conference

          GECCO '24
          Genetic and Evolutionary Computation Conference
          July 14 - 18, 2024
          Melbourne , VIC , Australia

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader