skip to main content
article

Efficient simulation of inextensible cloth

Published:29 July 2007Publication History
Skip Abstract Section

Abstract

Many textiles do not noticeably stretch under their own weight. Unfortunately, for better performance many cloth solvers disregard this fact. We propose a method to obtain very low strain along the warp and weft direction using Constrained Lagrangian Mechanics and a novel fast projection method. The resulting algorithm acts as a velocity filter that easily integrates into existing simulation code.

Skip Supplemental Material Section

Supplemental Material

pps049.mp4

mp4

40.7 MB

References

  1. Ascher, U. M., Ruuth, S. J., and Spiteri, R. J. 1997. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics: Transactions of IMACS 25, 2--3, 151--167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH 98, ACM Press / ACM SIGGRAPH, New York, NY, USA, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barth, E., Kuczera, K., Leimkuhler, B., and Skeel, R. 1994. Algorithms for Constrained Molecular Dynamics. March.Google ScholarGoogle Scholar
  4. Bercovier, M., and Pat, T. 1984. A C 0 finite element method for the analysis of inextensibile pipe lines. Computers and Structures 18, 6, 1019--1023.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Fourth Eurographics Symposium on Geometry Processing, 227--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Boxerman, E. 2003. Speeding up cloth simulation. Master's thesis, University of British Columbia.Google ScholarGoogle Scholar
  7. Breen, D. E., House, D. H., and Wozny, M. J. 1994. Predicting the drape of woven cloth using interacting particles. In Proceedings of ACM SIGGRAPH 1994, ACM Press/ACM SIGGRAPH, New York, NY, USA, 365--372. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bridson, R., Fedkiw, R. P., and Anderson, J. 2002. Robust treatment of collisions, contact, and friction for cloth animation. ACM Transactions on Graphics 21, 3 (July), 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Symposium on Computer animation, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Transactions on Graphics" 21, 3, 604--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Choi, K.-J., and Ko, H.-S. 2005. Research problems in clothing simulation. Computer-Aided Design 37, 6, 585--592. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Desbrun, M., Schröder, P., and Barr, A. 1999. Interactive animation of structured deformable objects. In Graphics Interface '99, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Eberhardt, B., Weber, A., and Strasser, W. 1996. A fast, flexible, particle-system model for cloth draping. IEEE Comput. Graph. Appl. 16, 5, 52--59. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eberhardt, B., Etzmuss, O., and Hauth, M. 2000. Implicit-explicit schemes for fast animation with particle systems 137--154.Google ScholarGoogle Scholar
  15. Fuhrmann, A., Gross, C., and Luckas, V. 2003. Interactive animation of cloth including self collision detection. In WSCG '03, 141--148.Google ScholarGoogle Scholar
  16. Griffiths, P., and Kulke, T. 2002. Clothing movement---visual sensory evaluation and its correlation to fabric properties. Journal of sensory studies 17, 3, 229--255.Google ScholarGoogle ScholarCross RefCross Ref
  17. Hairer, E., Lubich, C., and Wanner, G. 2002. Geometric Numerical Integration. No. 31 in Springer Series in Computational Mathematics. Springer-Verlag.Google ScholarGoogle Scholar
  18. Hauth, M., Etzmuss, O., and Strasser, W. 2003. Analysis of numerical methods for the simulation of deformable models. The Visual Computer 19, 7--8, 581--600.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hong, M., Choi, M.-H., Jung, S., Welch, S., and Trapp, J. 2005. Effective constrained dynamic simulation using implicit constraint enforcement. In International Conference on Robotics and Automation, 4520--4525.Google ScholarGoogle Scholar
  20. House, D. H., and Breen, D. E., Eds. 2000. Cloth modeling and animation. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. House, D. H., DeVaul, R. W., and Breen, D. E. 1996. Towards simulating cloth dynamics using interacting particles. International Journal of Clothing Science and Technology 8, 3, 75--94.Google ScholarGoogle ScholarCross RefCross Ref
  22. Marsden, J. 1999. Introduction to Mechanics and Symmetry. Springer.Google ScholarGoogle Scholar
  23. Meyer, M., Debunne, G., Desbrun, M., and Barr, A. H. 2001. Interactive animation of cloth-like objects in virtual reality. The Journal of Visualization and Computer Animation 12, 1 (Feb.), 1--12.Google ScholarGoogle ScholarCross RefCross Ref
  24. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2006. Position based dynamics. In Proceedings of Virtual Reality Interactions and Physical Simulation (VRIPHYS), C. Mendoza and I. Navazo, Eds., 71--80.Google ScholarGoogle Scholar
  25. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Graphics Interface, 147--154.Google ScholarGoogle Scholar
  26. Schenk, O., and Gärtner, K. 2006. On fast factorization pivoting methods for sparse symmetric indefinite systems. Elec. Trans. Numer. Anal 23, 158--179.Google ScholarGoogle Scholar
  27. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proceedings of ACM SIGGRAPH 87), ACM Press, New York, NY, USA, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tsiknis, K. D. 2006. Better cloth through unbiased strain limiting and physics-aware subdivision. Master's thesis, The University of British Columbia.Google ScholarGoogle Scholar
  29. Volino, P., and Magnenat-Thalmann, N. Comparing efficiency of integration methods for cloth simulation. Computer Graphics International. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Witkin, A., Gleicher, M., and Welch, W. 1990. Interactive dynamics. Computer Graphics (Proceedings of ACM SIGGRAPH 90) 24, 2, 11--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Zienkiewicz, O. C., and Taylor, R. C. 1989. The finite element method. McGraw Hill. 2.Google ScholarGoogle Scholar

Index Terms

  1. Efficient simulation of inextensible cloth

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader