skip to main content
article

Performance animation from low-dimensional control signals

Published:01 July 2005Publication History
Skip Abstract Section

Abstract

This paper introduces an approach to performance animation that employs video cameras and a small set of retro-reflective markers to create a low-cost, easy-to-use system that might someday be practical for home use. The low-dimensional control signals from the user's performance are supplemented by a database of pre-recorded human motion. At run time, the system automatically learns a series of local models from a set of motion capture examples that are a close match to the marker locations captured by the cameras. These local models are then used to reconstruct the motion of the user as a full-body animation. We demonstrate the power of this approach with real-time control of six different behaviors using two video cameras and a small set of retro-reflective markers. We compare the resulting animation to animation from commercial motion capture equipment with a full set of markers.

Skip Supplemental Material Section

Supplemental Material

pps035.mp4

mp4

39.4 MB

References

  1. Aha, D. 1997. Editorial, special issue on lazy learning. In Artificial Intelligence Review. 11(1--5):1--6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. In ACM Transactions on Graphics. 21(3):483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2003. Motion synthesis from annotations. In ACM Transactions on Graphics. 22(3):402--408. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Atkeson, C. G., Moore, A. W., and Schaal, S. 1997a. Locally weighted learning. In Artificial Intelligence Review. 11(1--5):11--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Atkeson, C. G., Moore, A. W., and Schaal, S. 1997b. Locally weighted learning for control. In Artificial Intelligence Review. 11(1--5):75--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Badler, N. I., Hollick, M., and Granieri, J. 1993. Real-time control of a virtual human using minimal sensors. In Presence. 2(1):82--86.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bazaraa, M. S., Sherali, H. D., and Shetty, C. 1993. Nonlinear Programming: Theory and Algorithms. John Wiley and Sons Ltd. 2nd Edition.Google ScholarGoogle Scholar
  8. Bishop, C. 1996. Neural Network for Pattern Recognition. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brand, M., and Hertzmann, A. 2000. Style machines. In Proceedings of ACM SIGGRAPH 2000. 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Brand, M. 1999. Shadow puppetry. In Proceedings of IEEE International Conference on Computer Vision. 1237--1244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bregler, C., and Omohundro, S. 1995. Nonlinear image interpolation using manifold learning. In Advances in Neural Information Processing Systems 7. 973--980.Google ScholarGoogle Scholar
  12. Cheung, G., Baker, S., and Kanade, T. 2003. Shape-from-silhouette of articulated object and its use for human body kinematics estimation and motion capture. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 77--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Daelemans, W., and Van De Bosch. A. 2001. Treetalk: Memory-based word phonemisation. In Data-Driven Techniques in Speech Synthesis, Kluwer. 149--172.Google ScholarGoogle Scholar
  14. Dontcheva, M., Yngve, G., and Popovic, Z. 2003. Layered acting for character animation. In ACM Transactions on Graphics. 22(3):409--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Freeman, W. T., Anderson, D., Beardsley, P., Dodge, C., Kage, H., Kyuma, K., Miyake, Y., Roth, M., Tanaka, K., Weissman, C., and Yerazunis, W. 1998. Computer vision for interactive computer graphics. In IEEE Computer Graphics and Applications. 18(3):42--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fukunaga, K., and Olsen. D. 1971. An algorithm for finding intrinsic dimensionality of data. In IEEE Transactions on Computers. C-20:176--183.Google ScholarGoogle Scholar
  17. Grochow. K., Martin, S. L., Hertzmann, A., and Popovic, Z. 2004. Style-based inverse kinematics. In ACM Transactions on Graphics. 23(3):522--531. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Guo. S., and Roberge, J. 1996. A high level control mechanism for human locomotion based on parametric frame space interpolation. In Eurographics Workshop on Computer Animation and Simulation '96. 95--107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hinton. G., Revow, M., and Dayan, P. 1995. Recognizing handwritten digits using mixtures of linear models. In Advances in Neural Information Processing Systems 7. 1015--1022.Google ScholarGoogle Scholar
  20. Howe. N., Leventon, M., and Freeman, W. 1999. Bayesian reconstruction of 3d human motion from single-camera video. In Advances in Neural Information Processing Systems 12. 820--826.Google ScholarGoogle Scholar
  21. Konami Boxing and Police 911 GAME, 2001. http://www.konami.com.Google ScholarGoogle Scholar
  22. Kovar. L., and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. In ACM Transactions on Graphics. 23(3):559--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kovar. L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In ACM Transactions on Graphics. 21(3):473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lawrence, N. D. 2004. Gaussian process latent variable models for visualization of high dimensional data. In Advances in Neural Information Processing Systems 16. 329--336.Google ScholarGoogle Scholar
  25. Lee, J., Chai, J., Reitsma, P., Hodgins, J., and Pollard, N. 2002. Interactive control of avatars animated with human motion data. In ACM Transactions on Graphics. 21(3):491--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion texture: A two-level statistical model for character synthesis. In ACM Transactions on Graphics. 21(3):465--472. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Mardia, K., Kent, J., and Bibby, M. 1979. Multivariate Analysis. Academy Press.Google ScholarGoogle Scholar
  28. MicroStrain 3DM-G, 2004. http://www.microstrain.com.Google ScholarGoogle Scholar
  29. Oore, S., Terzopoulos, D., and Hinton, G. 2002. A desktop input device and interface for interactive 3d character. In Proceedings of Graphics Interface 2002. 133--140.Google ScholarGoogle Scholar
  30. Pullen, K., and Bregler, C. 2002. Motion capture assisted animation: Texturing and synthesis. In ACM Transactions on Graphics. 21(3):501--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ren, L., Shakhnarovich, G., Hodgins, J. K., Pfister, H., and Viola, P. A. 2004. Learning silhouette features for control of human motion. In Computer Science Technical Reports 2004, Carnegie Mellon University. CMU-CS-04-165.Google ScholarGoogle Scholar
  32. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. In IEEE Computer Graphics and Applications. 18(5):32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Roweis, S., and Saul, L. 2000. Nonlinear dimensionality reduction by locally linear embedding. In Science. 290(5500):2323--2326.Google ScholarGoogle ScholarCross RefCross Ref
  34. Safonova, A., Hodgins, J., and Pollard, N. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In ACM Transactions on Graphics. 23(3):514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Scholkopf, B., Smola, A., and Muller, K.-R. 1999. Kernel principal component analysis. In Advances in Kernel Methods-SV Learning, MIT Press. 327--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Semwal, S., Hightower, R., and Stansfield, S. 1998. Mapping algorithms for real-time control of an avatar using eight sensors. In Presence. 7(1):1--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shin, H. J., Lee, J., Gleicher, M., and Shin, S. Y. 2001. Computer puppetry: An importance-based approach. In ACM Transactions on Graphics. 20(2):67--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sidenbladh, H., Black, M. J., and Sigal, L. 2002. Implicit probabilistic models of human motion for synthesis and tracking. In European Conference on Computer Vision. 784--800. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Sony Eye Toy Systems, 2003. http://www.eyetoy.com.Google ScholarGoogle Scholar
  40. Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions. In Journal of the Royal Statistical Society. 36:111--147.Google ScholarGoogle Scholar
  41. Tenenbaum, J., Silva, V., and Langford, J. 2000. A global geometric framework for nonlinear dimensionality reduction. In Science. 290(5500):2319--2323.Google ScholarGoogle ScholarCross RefCross Ref
  42. Vicon Systems, 2004. http://www.vicon.com.Google ScholarGoogle Scholar
  43. Wiley, D. J., and Hahn, J. K. 1997. Interpolation synthesis of articulated figure motion. In IEEE Computer Graphics and Applications. 17(6):39--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Xsens Mt-9, 2004. http://www.xsens.com.Google ScholarGoogle Scholar
  45. Xu, G., and Zhang, Z. 1996. Epipolar Geometry in Stereo, Motion, and Object Recognition: A Unified Approach. Kluwer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Yamane, K., and Nakamura, Y. 2003. Natural motion animation through constraining and deconstraining at will. In IEEE Transactions on Visualization and Computer Graphics. 9(3):352--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Yamane, K., Kuffner, J. J., and Hodgins, J. K. 2004. Synthesizing animations of human manipulation tasks. In ACM Transactions on Graphics. 23(3):532--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Yin, K., and Pai, D. K. 2003. Footsee: An interactive animation system. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 329--338. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zhang, Z. 1999. Flexible camera calibration by viewing a plane from unknown orientations. In Proceedings of the International Conference on Computer Vision. 666--673.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Performance animation from low-dimensional control signals

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 24, Issue 3
          July 2005
          826 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1073204
          Issue’s Table of Contents

          Copyright © 2005 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2005
          Published in tog Volume 24, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader