Skip to main content

Advertisement

Log in

On the importance of the convergence to climate attractors

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Ensemble approaches are becoming widely used in climate research. In contrast to weather forecast, however, in the climatic context one is interested in long-time properties, those arising on the scale of several decades. The well-known strong internal variability of the climate system implies the existence of a related dynamical attractor with chaotic properties. Under the condition of climate change this should be a snapshot attractor, naturally arising in an ensemble-based framework. Although ensemble averages can be evaluated at any instant of time, results obtained during the process of convergence of the ensemble towards the attractor are not relevant from the point of view of climate. In simulations, therefore, attention should be paid to whether the convergence to the attractor has taken place. We point out that this convergence is of exponential character, therefore, in a finite amount of time after initialization relevant results can be obtained. The role of the time scale separation due to the presence of the deep ocean is discussed from the point of view of ensemble simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ghil, M.D. Chekroun, E. Simonnet, Physica D 237, 2111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  2. T. Bódai, G. Károlyi, T. Tél, Phys. Rev. E 83, 046201 (2011)

    Article  ADS  Google Scholar 

  3. T. Bódai, T. Tél, Chaos 22, 023110 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.D. Daron, D.A. Stainforth, Chaos 25, 043103 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Pierini, M. Ghil, M.D. Chekroun, J. Clim. 29, 4185 (2016)

    Article  ADS  Google Scholar 

  6. H. Goosse, H. Renssen, A. Timmermann, R.S. Bradley, Quat. Sci. Rev. 24, 1345 (2005)

    Article  ADS  Google Scholar 

  7. C. Deser, R. Knutti, S. Solomon, A.S. Phillips, Nat. Clim. Change 2, 775 (2012)

    Article  ADS  Google Scholar 

  8. C. Deser, A. Phillips, V. Bourdette, H. Teng, Clim. Dyn. 38, 527 (2012)

    Article  Google Scholar 

  9. W.M. Kim, G. Danabasoglu, S. Yeager, in CESM Workshop, Jun. 16, The Village at Breckenridge, Breckenridge, CO, USA, 2015 (National Center for Atmospheric Research)

  10. J.E. Kay et al. Bull. Am. Meteorol. Soc. 96, 1333 (2015)

    Article  ADS  Google Scholar 

  11. F. Ragone, V. Lucarini, F. Lunkeit, Clim. Dyn. 46, 1459 (2016)

    Article  Google Scholar 

  12. V. Lucarini, F. Lunkeit, F. Ragone, J. Stat. Phys. 166, 1036 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. E. Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability (Cambridge University Press, Cambridge, UK, 2003)

  14. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, UK, 1993)

  15. F.J. Romeiras, C. Grebogi, E. Ott, Phys. Rev. A 41, 784 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.D. Chekroun, E. Simonnet, M. Ghil, Physica D 240, 1685 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Vincze, Modeling Climate Change in the Laboratory, in Teaching Physics Innovatively, edited by A. Király, T. Tél (PhD School of Physics, Eötvös University, Budapest, 2016), pp. 107–118

  18. M. Vincze, I.D. Borcia, U. Harlander, Sci. Rep. 7, 254 (2017)

    Article  ADS  Google Scholar 

  19. G. Drótos, T. Bódai, T. Tél, J. Clim. 28, 3275 (2015)

    Article  ADS  Google Scholar 

  20. M. Herein, J. Márfy, G. Drótos, T. Tél, J. Clim. 29, 259 (2016)

    Article  ADS  Google Scholar 

  21. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, UK, 1998)

  22. P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, G. Vattay, Chaos: Classical and Quantum, ChaosBook.org. (Niels Bohr Institute, Copenhagen, Denmark, 2016)

  23. M. Herein, G. Drótos, T. Haszpra, J. Márfy, T. Tél, Sci. Rep. 7, 44529 (2017)

    Article  ADS  Google Scholar 

  24. K. Fraedrich, H. Jansen, E. Kirk, U. Luksch, F. Lunkeit, Meteorol. Z. 14, 299 (2005)

    Article  Google Scholar 

  25. https://www.gfdl.noaa.gov/blog_held/3-transient-vs-equilibrium-climate-responses/

  26. C. Kuehn, Multiple Time Scale Dynamics (Springer, 2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Drótos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drótos, G., Bódai, T. & Tél, T. On the importance of the convergence to climate attractors. Eur. Phys. J. Spec. Top. 226, 2031–2038 (2017). https://doi.org/10.1140/epjst/e2017-70045-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70045-7

Navigation