Skip to main content
Log in

Practical and conceptual path sampling issues

  • Review
  • B. Bridging of Time Scales and Methods for Rare Events
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the past 15 years transition path sampling (TPS) has evolved from its basic algorithm to an entire collection of methods and a framework for investigating rare events in complex systems. The methodology is applicable to a wide variety of systems and processes, ranging from transitions in small clusters or molecules to chemical reactions, phase transitions, and conformational changes in biomolecules. The basic idea of TPS is to harvest dynamical unbiased trajectories that connect a reactant with a product, by a Markov Chain Monte Carlo procedure called shooting. This simple importance sampling yields the rate constants, the free energy surface, insight in the mechanism of the rare event of interest, and by using the concept of the committor, also access to the reaction coordinate. In the last decade extensions to TPS have been developed, notably the transition interface sampling (TIS) methods, and its generalization multiple state TIS. Combination with advanced sampling methods such as replica exchange and the Wang-Landau algorithm, among others, improves sampling efficiency. Notwithstanding the success of TPS, there are issues left to discuss, and, despite the method’s apparent simplicity, many pitfalls to avoid. This paper discusses several of these issues and pitfalls: the choice of stable states and interface order parameters, the problem of positioning the TPS windows and TIS interfaces, the matter of convergence of the path ensemble, the matter of kinetic traps, and the question whether TPS is able to investigate and sample Markov state models. We also review the reweighting technique used to join path ensembles. Finally we discuss the use of the sampled path ensemble to obtain reaction coordinates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Frenkel, B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic Press, San Diego, Calfifornia,2002)

  2. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)

  3. P.G. Bolhuis, D. Chandler, C. Dellago, P.L. Geissler, Ann. Rev. Phys. Chem. 53, 291 (2002)

    Article  ADS  Google Scholar 

  4. R. Elber, A. Ghosh, A. Cárdenas, H. Stern, Adv. Chem. Phys. 126, 93 (2003)

    Google Scholar 

  5. G. Henkelman, G. Johannesson, H. Jónsson, Progress on Theoretical Chemistry and Physics, edited by S.D. Schwartz (Kluwer Academic Publishers, 2000)

  6. H. Jónsson, G. Mills, K.W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, D. Coker (World Scientific: Singapore, 1998)

  7. W.E, W. Ren, E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002)

    ADS  Google Scholar 

  8. L. Maragliano, A. Fischer, E. Vanden-Eijnden, G. Ciccotti, J. Chem. Phys. 125, 024106 (2006)

    Article  ADS  Google Scholar 

  9. C. Dellago, P.G Bolhuis, F.S. Csajka, D. Chandler, J. Chem. Phys. 108, 1964 (1998)

    Article  ADS  Google Scholar 

  10. P.G. Bolhuis, C. Dellago, D. Chandler, Faraday Discuss. 110, 421 (1998)

    Article  ADS  Google Scholar 

  11. C. Dellago, P.G. Bolhuis, D. Chandler, J. Chem. Phys. 108, 9236 (1998)

    Article  ADS  Google Scholar 

  12. C. Dellago, P.G. Bolhuis, D. Chandler, J. Chem. Phys. 110, 6617 (1999)

    Article  ADS  Google Scholar 

  13. T.S. van Erp, D. Moroni, P.G. Bolhuis, J. Chem. Phys. 118, 7762 (2003)

    Article  ADS  Google Scholar 

  14. T.S. van Erp, P.G. Bolhuis, J. Comp. Phys. 205, 157 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. T.S. Van Erp, Adv. Chem. Phys. 151, 27 (2012)

    Google Scholar 

  16. D. Moroni, P.G. Bolhuis, T.S. van Erp, J. Chem. Phys. 120, 4055 (2004)

    Article  ADS  Google Scholar 

  17. R. Allen, P.B. Warren, P.R. ten Wolde, Phys. Rev. Lett. 94, 018104 (2005)

    Article  ADS  Google Scholar 

  18. R.J. Allen, D. Frenkel, P.R. ten Wolde, J. Chem. Phys. 124, 024102 (2006)

    Article  ADS  Google Scholar 

  19. A. Dickson, A.R. Dinner, Annu. Rev. Phys. Chem. 61, 441 (2010)

    Article  Google Scholar 

  20. T.S. van Erp, Phys. Rev. Lett. 98, 268301 (2007)

    Article  ADS  Google Scholar 

  21. P.G. Bolhuis, J. Chem. Phys. 129, 114108 (2008)

    Article  ADS  Google Scholar 

  22. N. Guttenberg, A.R. Dinner, J. Weare, J. Chem. Phys. 136, 234103 (2012)

    Article  ADS  Google Scholar 

  23. C. Dellago, P.G. Bolhuis, edited by C. Holm, K. Kremer, Advanced computer simulation approaches for soft matter sciences III (Advances in polymer science, 221) (Berlin, Springer, 2009), p. 167

  24. C. Dellago, P.G. Bolhuis, P.L. Geissler, Adv. Chem. Phys. 123, 1 (2002)

    Google Scholar 

  25. P.G. Bolhuis, C. Dellago, Rev. Comp. Chem. 27, 111 (2010)

    Google Scholar 

  26. J. Juraszek, P.G. Bolhuis, Biophys. J. 95, 4246 (2008)

    Article  ADS  Google Scholar 

  27. J. Vreede, J. Juraszek, P.G. Bolhuis, Proc. Natl. Acad. Sci. USA 107, 2397 (2010)

    Article  ADS  Google Scholar 

  28. P.G. Bolhuis, W. Lechner, J. Stat. Phys. 145, 841 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. J. Rogal, W. Lechner, J. Juraszek, B. Ensing, P.G. Bolhuis, J. Chem. Phys. 133, 174109 (2010)

    Article  ADS  Google Scholar 

  30. P.L. Geissler, C. Dellago, D. Chandler, J. Phys. Chem. B 103, 3706 (1999)

    Article  Google Scholar 

  31. W. Lechner, C. Dellago, P.G. Bolhuis, Phys. Rev. Lett. 106, 085701 (2011)

    Article  ADS  Google Scholar 

  32. C. Schütte, F. Noé, J. Lu, M. Sarich, E. Vanden-Eijnden, J. Chem. Phys. 134, 204105 (2011)

    Article  ADS  Google Scholar 

  33. E.E. Borrero, M. Weinwurm, C. Dellago, J. Chem. Phys. 134, 244118 (2011)

    Article  ADS  Google Scholar 

  34. E.E. Borrero, F.A. Escobedo, J. Chem. Phys. 129, 024115 (2008)

    Article  ADS  Google Scholar 

  35. A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99, 12562 (2002)

    Article  ADS  Google Scholar 

  36. P.G. Bolhuis, J. Phys. Cond. Matter 15, S113 (2003)

    Article  ADS  Google Scholar 

  37. M. Grünwald, P.L. Geissler, C. Dellago, J. Chem. Phys. 129, 19401 (2008)

    Article  Google Scholar 

  38. J. Rogal, P.G. Bolhuis, J. Chem. Phys. 129, 224107 (2008)

    Article  ADS  Google Scholar 

  39. T.J.H. Vlugt, B. Smit, Phys. Chem. Comm. 2, 1 (2001)

    Google Scholar 

  40. E.E. Borrero, C. Dellago, J. Chem. Phys. 133, 134112 (2010)

    Article  ADS  Google Scholar 

  41. F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  42. C. Dellago, P.G. Bolhuis, Mol. Sim. 30, 795 (2004)

    Article  MATH  Google Scholar 

  43. D.W.H. Swenson, P.G. Bolhuis, J. Chem. Phys. 141, 044101 (2014)

    Article  ADS  Google Scholar 

  44. E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992)

    Article  ADS  Google Scholar 

  45. W. Du, P.G. Bolhuis, J. Chem. Phys. 139, 044105 (2013)

    Article  ADS  Google Scholar 

  46. J.H. Prinz, Jan-Hendrik, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J.D. Chodera, C. Schütte, F. Noé, J. Chem. Phys. 134, 174105 (2011)

    Article  ADS  Google Scholar 

  47. X. Huang, G.R. Bowman, S. Bacalladoc, V.S. Pande, Proc. Natl. Acad. Sci. USA 106, 19765 (2009)

    Article  Google Scholar 

  48. N. Singhal, C.D. Snow, V.S. Pande, J. Chem. Phys. 121, 415 (2004)

    Article  ADS  Google Scholar 

  49. W. Du, P.G. Bolhuis, J. Chem. Phys. 140, 195102 (2014)

    Article  ADS  Google Scholar 

  50. M.R. Shirts, J.D. Chodera, J. Chem. Phys. 129, 129105 (2008)

    Google Scholar 

  51. D. Minh, J.D. Chodera, J. Chem. Phys. 131, 134110 (2009)

    Article  ADS  Google Scholar 

  52. A.L. Ferguson, A.Z. Panagiotopoulos, P.G. Debenedetti, I.G. Kevrekidis, Proc. Natl. Acad. Sci. USA 107, 13597 (2010)

    Article  ADS  Google Scholar 

  53. M.A. Rohrdanz, W. Zheng, M. Maggioni, C. Clementi, J. Chem. Phys. 134, 124116 (2011)

    Article  ADS  Google Scholar 

  54. G.A. Tribello, M. Ceriotti, M. Parrinello, Proc. Natl. Acad. Sci. USA 109, 5196 (2012)

    Article  ADS  Google Scholar 

  55. G. Hummer, J. Chem. Phys. 120, 516 (2004)

    Article  ADS  Google Scholar 

  56. W.E.W. Ren, E. Vanden-Eijnden, Chem. Phys. Lett. 413, 242 (2005)

    Article  ADS  Google Scholar 

  57. D.G. Truhlar, B.C. Garrett, S.J. Klippenstein, J. Phys. Chem. 100, 31 (1996)

    Article  Google Scholar 

  58. B. Peters, B.L. Trout, J. Chem. Phys. 125, 054108 (2006)

    Article  ADS  Google Scholar 

  59. W. Lechner, J. Rogal, J. Juraszek, B. Ensing, P.G. Bolhuis, J. Chem. Phys. 133, 174110 (2010)

    Article  ADS  Google Scholar 

  60. C. Leitold, C. Dellago, J. Chem. Phys. 141, 134901 (2014)

    Article  ADS  Google Scholar 

  61. S. Jungblut, A. Singraber, C. Dellago, Mol. Phys. 111, 3527 (2013)

    Article  ADS  Google Scholar 

  62. A. Ma, A.R. Dinner, J. Phys. Chem. B 109, 6769 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Bolhuis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolhuis, P.G., Dellago, C. Practical and conceptual path sampling issues. Eur. Phys. J. Spec. Top. 224, 2409–2427 (2015). https://doi.org/10.1140/epjst/e2015-02419-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02419-6

Keywords

Navigation