Skip to main content
Log in

Comments on employing the Riesz-Feller derivative in the Schrödinger equation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, we deal with a fractional Schrödinger equation that contains the quantum Riesz-Feller derivative instead of the Laplace operator in the case of a particle moving in a potential field. In particular, this equation is solved for a free particle in terms of the Fox H-function. On the other hand, we show that from physical viewpoint, the fractional Schrödinger equation with the quantum Riesz-Feller derivative of order α, 0 < α ≤ 2 and skewness θ makes sense only if it reduces to the Laplace operator (α = 2) or to the quantum Riesz fractional derivative (θ = 0). The reason is that the quantum Riesz-Feller derivative is a Hermitian operator and possesses real eigenvalues only when α = 2 or θ = 0. We then focus on the time-independent one-dimensional fractional Schrödinger equation with the quantum Riesz derivative in the case of a particle moving in an infinite potential well. In particular, we show that the explicit formulas for the eigenvalues and eigenfunctions of the time-independent fractional Schrödinger equation that some authors recently claimed to receive cannot be valid. The problem to find right formulas is still open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Dong, M. Xu, J. Math. Anal. Appl. 344, 1005 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Feller, On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them, Meddelanden Lunds Universitets Matematiska Seminarium (Comm. Sém. Mathém. Université de Lund), Tome suppl. dédié à M. Riesz, Lund, 73 (1952)

  3. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

  4. R. Gorenflo, F. Mainardi, Fract. Calc. Appl. Anal. 1, 167 (1998)

    MathSciNet  MATH  Google Scholar 

  5. R. Gorenflo, F. Mainardi, J. Anal. Appl. 18, 231 (1999)

    MathSciNet  MATH  Google Scholar 

  6. X. Guo, M. Xu, J. Math. Phys. 47, 082104 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  7. A.A. Kilbas, Yu.F. Luchko, H. Martinez, J.J. Trujillo, Integral Trans. Special Funct. 21, 779 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Kwasnicki, J. Funct. Anal. 262, 2379 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Laskin, Fractals Quantum Mech. Chaos 10, 780 (2000)

    Google Scholar 

  10. N. Laskin, Fractional Quant. Mech. Lévy Path Integr. Phys. Lett. A 268, 298 (2000)

    MathSciNet  MATH  Google Scholar 

  11. N. Laskin, Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  12. N. Laskin, Principles of fractional quantum mechanics, edited by J. Klafter, S.C. Lim and R. Metzler, Fractional Dynamics: Recent Advances (World Scientific, Singapore, 2012), p. 393

  13. Yu. Luchko, H. Matrinez, J.J. Trujillo, Fract. Calc. Appl. Anal. 11, 457 (2008)

    MathSciNet  MATH  Google Scholar 

  14. F. Mainardi, Yu. Luchko, G. Pagnini, Fract. Calc. Appl. Anal. 4, 153 (2001)

    MathSciNet  MATH  Google Scholar 

  15. A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-function. Theory and Applications (Berlin, Springer, 2010)

  16. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

  17. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publ., London, 1993)

  18. Sh. Wang, M. Xu, J. Math. Phys. 48, 043502 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, 2005)

  20. A. Zoia, A. Rosso, M. Kardar, Phys. Rev. E 76, 021116 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Al-Saqabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Saqabi, B., Boyadjiev, L. & Luchko, Y. Comments on employing the Riesz-Feller derivative in the Schrödinger equation. Eur. Phys. J. Spec. Top. 222, 1779–1794 (2013). https://doi.org/10.1140/epjst/e2013-01963-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01963-3

Keywords

Navigation