Skip to main content
Log in

Low-dimensional physics of ultracold gases with bound states and the sine-Gordon model

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

One-dimensional systems of interacting atoms are an ideal laboratory to study the Kosterlitz-Thouless phase transition. In the renormalization group picture there is essentially a two-parameter phase diagram to explore. We first present how detailed experiments have shown direct evidence for the theoretical treatment of this transition. Then generalization to the case of two-component systems with bound state formation is discussed. Trimer formation in the asymmetric attractive Hubbard model involve in a crucial way this kind of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. For a review of both theoretical and experimental status see, e.g., S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008), and references therein

    Article  ADS  Google Scholar 

  2. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid St. Phys. 6, 1181 (1973)

    Article  ADS  Google Scholar 

  3. D.J. Amit, Y.Y. Goldschmidt, G. Grinstein, J. Phys. A: Math. Gen. 13, 585 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  4. Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, J. Dalibard, Nature 441, 1118 (2006)

    Article  ADS  Google Scholar 

  5. Z. Hadzibabic, P. Krüger, M. Cheneau, S.P. Rath, J. Dalibard, New J. Phys. 10, 045006 (2008)

    Article  ADS  Google Scholar 

  6. P.M. Chaikin, T.C. Lubensky, Principles of condensed matter physics (Cambridge University Press, 1995)

  7. H.P. Büchler, G. Blatter, W. Zwerger, Phys. Rev. Lett. 90, 130401 (2003)

    Article  Google Scholar 

  8. E. Haller, et al., Nature 466, 597 (2010)

    Article  ADS  Google Scholar 

  9. P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)

    Article  ADS  Google Scholar 

  10. A.I. Larkin, Yu. N. Ovchinikov, Sov. Phys. JETP 20, 762 (1965)

    Google Scholar 

  11. M.W. Zwierlein, et al., Science 311, 492 (2006)

    Article  ADS  Google Scholar 

  12. M.W. Zwierlein, et al., Nature 422, 54 (2006)

    Article  ADS  Google Scholar 

  13. Y. Shin, et al., Phys. Rev. Lett. 97, 030401 (2006)

    Article  ADS  Google Scholar 

  14. G.B. Partridge, et al., Science 311, 503 (2006)

    Article  ADS  Google Scholar 

  15. G.B. Partridge, et al., Phys. Rev. Lett. 97, 190407 (2006)

    Article  ADS  Google Scholar 

  16. G. Orso, Phys. Rev. Lett 98, 070402 (2007)

    Article  ADS  Google Scholar 

  17. H. Hu, X.-J. Liu, P.D. Drummond, Phys. Rev. Lett. 98, 070403 (2007)

    Article  ADS  Google Scholar 

  18. A. Feiguin, F. Heidrich-Meisner, Phys. Rev. B 76, 220508(R) (2007)

    Article  ADS  Google Scholar 

  19. G.G. Batrouni, et al., Phys. Rev. Lett. 100, 116405 (2008)

    Article  ADS  Google Scholar 

  20. M. Rizzi, et al., Phys. Rev. B 77, 245105 (2008)

    Article  ADS  Google Scholar 

  21. M. Tezuka, M. Ueda, Phys. Rev. Lett. 100, 110403 (2008)

    Article  ADS  Google Scholar 

  22. M. Takahashi, Progr. Theor. Phys. 43, 917 (1970)

    Article  ADS  Google Scholar 

  23. M.A. Cazalilla, A.F. Ho, Th. Giamarchi, Phys. Rev. Lett. 95, 226402 (2005)

    Article  ADS  Google Scholar 

  24. G.G. Batrouni, et al., Europhys. Lett. 86, 47006 (2009)

    Article  ADS  Google Scholar 

  25. B. Wang, Han-Dong Chen, S. Das Sarma, Phys. Rev. A 79, 051604(R) (2009)

    ADS  Google Scholar 

  26. C. Micheletti, A.B. Harris, J.M. Yeomans, J. Phys. A: Math. Gen. 30, L711 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. C. Gruber, D. Ueltschi, J. Jedrzejewski, J. Stat. Phys. 76, 125 (1994)

    Article  ADS  Google Scholar 

  28. E. Burovski, G. Orso, Th. Jolicoeur, Phys. Rev. Lett. 103, 215301 (2009)

    Article  ADS  Google Scholar 

  29. G. Orso, E. Burovsky, Th. Jolicoeur, Phys. Rev. Lett. 104, 065301 (2010)

    Article  ADS  Google Scholar 

  30. D.C. Mattis, Rev. Mod. Phys. 58, 361 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  31. H. Moritz, et al., Phys. Rev. Lett. 94, 210401 (2005)

    Article  ADS  Google Scholar 

  32. I. Carusotto, Y. Castin, Phys. Rev. Lett. 94, 223202 (2005)

    Article  ADS  Google Scholar 

  33. G. Roux, E. Burovsky, Th. Jolicoeur, Phys. Rev. A 83, 053618 (2011)

    Article  ADS  Google Scholar 

  34. T. Keilmann, J.I. Cirac, T. Roscilde, Phys. Rev. Lett. 102, 255304 (2009)

    Article  ADS  Google Scholar 

  35. M. Dalmonte, K. Dieckmann, T. Roscilde, C. Hartl, A.E. Feiguin, U. Schollwóck, F. Heidrich-Meisner, Phys. Rev. A 85, 063608 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolicoeur, T., Burovsky, E. & Orso, G. Low-dimensional physics of ultracold gases with bound states and the sine-Gordon model. Eur. Phys. J. Spec. Top. 217, 3–12 (2013). https://doi.org/10.1140/epjst/e2013-01749-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01749-7

Keywords

Navigation