Skip to main content
Log in

Spalling uniaxial strength of Al2O3 at high strain rates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this article research into the uniaxial tensile strength of Al2O3 monolithic ceramic is presented. The experimental procedure of the spalling of long bars is investigated from different approaches. This method is used to obtain the tensile strength at high strain rates under uniaxial conditions. Different methodologies proposed by several authors are used to obtain the tensile strength. The hypotheses needed for the experimental set-up are also checked, and the requirements of the set-up and the variables are also studied by means of numerical simulations. The research shows that the shape of the projectile is crucial to achieve successfully tests results. An experimental campaign has been carried out including high speed video and a digital image correlation system to obtain the tensile strength of alumina. Finally, a comparison of the test results provided by three different methods proposed by different authors is presented. The tensile strength obtained from the three such methods on the same specimens provides contrasting results. Mean values vary from one method to another but the trends are similar for two of the methods. The third method gives less scatter, though the mean values obtained are lower and do not follow the same trend as the other methods for the different specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.D. Quinn, Engineered Materials Handbook, Ceramic and Glasses, vol. 4 (ASM International, 1991)

  2. G. Quinn, J. Amer. Ceram. Society 73, 2374 (1990)

    Article  Google Scholar 

  3. C. Rocco, G.V. Guinea, J. Planas, M. Elices, Mater. Struct. 32, 210 (1999)

    Article  Google Scholar 

  4. J.E.O. Ovri, T.J. Davies, Mater. Sci. Eng. 96, 109 (1987)

    Article  Google Scholar 

  5. B. Hopkinson, Philosophical Transactions of the Royal Society of London Series a – Containing Papers of a Mathematical or Physical Character 213, 437 (1914)

    Article  ADS  Google Scholar 

  6. J. Rodríguez, C. Navarro, V. Sanchez-Gálvez, J. Phys. IV (France) 4, 101 (1994)

    Article  Google Scholar 

  7. F. Gálvez, V. Sánchez-Galvez, J. Phys. IV (France) 110, 347 (2003)

    Article  Google Scholar 

  8. H. Kolsky, A.C. Shearman, Research 2, 384 (1949)

    Google Scholar 

  9. H. Kolsky, Y.Y. Shi, Proc. Phys. Society London 72, 447 (1958)

    Article  ADS  Google Scholar 

  10. J.N. Johnson, J. Appl. Phys. 52, 2812 (1981)

    Article  ADS  Google Scholar 

  11. G.T. Gray, N.K. Bourne, B.L. Henrie, J.C.F. Millett, J. Phys. IV (France) 110, 773 (2003)

    Article  Google Scholar 

  12. S.A. Maloy, G.T. Gray, C.M. Cady, R.W. Rutherford, R.S. Hixson, Metall. Mater. Trans. a-Phys. Metall. Mater. Sci. 35A, 2617 (2004)

    Article  Google Scholar 

  13. G.I. Taylor, Research 5, 508 (1952)

    Google Scholar 

  14. J. Najar, J. Phys. IV (France) 4, 647 (1994)

    Google Scholar 

  15. C. Johnstone, C. Ruiz, Int. J. Solids Struct. 32, 2647 (1995)

    Article  Google Scholar 

  16. F. Gálvez, J. Rodríguez, V. Sánchez-Gálvez, J. Phys. IV (France) 07, C3 (1997)

    Google Scholar 

  17. F. Gálvez, J. Rodríguez, V. Sánchez-Gálvez, J. Phys. IV (France) 10, 203 (2000)

    Google Scholar 

  18. F. Gálvez Dıíaz-Rubio, J. Rodrıguez Pérez, V. Sánchez-Gálvez, Int. J. Impact Eng. 27, 161 (2002)

    Article  Google Scholar 

  19. F. Gálvez, J. Rodríguez, V. Sánchez-Gálvez, J. Phys. IV (France) 10, 323 (2000)

    Google Scholar 

  20. M. Diamaruya, H. Kobayashi, T. Nonaka, J. Phys. IV (France) 7, 253 (1997)

    Google Scholar 

  21. J.R. Klepaczko, A. Brara, Int. J. Impact Eng. 25, 387 (2001)

    Article  Google Scholar 

  22. A. Brara, F. Camborde, J.R. Klepaczko, C. Mariotti, Mech. Mater. 33, 33 (2001)

    Article  Google Scholar 

  23. X.L. Dong, Z.Q. Hong, S.L. Zhang, J.Y. Chen, L. Wang, DYMAT 2009, 449 (EDP Sciences, 2009)

  24. R. Govender, L. Louca, A. Pullen, G. Nurick, DYMAT 2009, 633 (EDP Sciences, 2009)

  25. H.J. Wu, Q.M. Zhang, F.L. Huang, Q.K. Jin, Int. J. Impact Eng. 32, 605 (2005)

    Article  Google Scholar 

  26. T. Gómez del Río, J. Rodríguez Pérez, Int. J. Impact Eng. 34, 377 (2007)

    Article  Google Scholar 

  27. B. Erzar, P. Forquin, Exper. Mech. 50, 941 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Martín, M.J., Erice, B., Cendón, D.A. et al. Spalling uniaxial strength of Al2O3 at high strain rates. Eur. Phys. J. Spec. Top. 206, 117–128 (2012). https://doi.org/10.1140/epjst/e2012-01593-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01593-3

Keywords

Navigation